16 research outputs found

    More Than Smell - COVID-19 Is Associated With Severe Impairment of Smell,Taste, and Chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms

    Pro-apoptotic anti-NG2/CSPG4 antibodies and their uses in disease therapy

    No full text
    The present invention relates to an antibody capable of binding with highaffinity and high selectivity to the ectodomain of the transmembrane proteoglycan (PG) NG2/CSPG4. The invention specifically refers to said antibody possessing the ability to uniquely induce programmed cell death through canonical caspase-dependent apoptosis or authophagy, 5 in cancer cells specifically expressing such protein, and without the participation of other exogenously added factors. Moreover, the present invention refers to a composition comprising the antibody of the invention as pharmaceutical excipients

    Pro-apoptotic anti-NG2/CSPG4 monoclonal antibodies for disease therapy

    No full text
    A first aspect of the present invention refers to an antibody, preferably a monoclonal antibody, recognizing the extracellular domain of NG2/CSPG4 and its ability to induce apoptosis and/or autophagy upon antigen-binding in cancer cells expressing NG2/CSPG4. 10 Therefore, the antibody of the invention can be used for cell growth inhibition by exposing a cell expressing NG2/CSPG4 to a therapeutic amount of an antibody capable of binding to NG2/CSPG4. A second aspect of the present invention refers to a pharmacological composition comprising a therapeutic amount of the antibody, in its entirety or single chain variable 15 fragment (scFv) of the invention that is active against NG2/CSPG4, or any other portion of the antibody, preferably, embodied in a bispecific antibody construct (e.g. an antibody binding both NG2/CSPG4 and another cell surface molecule and/or antigen) or a fusion protein comprised of a therapeutic amount of the antibody, in its entirety or single chain variable fragment, or scFv, an another therapeutic molecule, such as a cytochine or an 20 aptoptosis-inducing agent (e.g TRAIL or Fas Ligand), or a CAR T (Chimeric Antigen Receptor T cell) construct in which the scFv derived from the portion of the antibody of the invention is expressed on the surface of a CAR T cell, such as to simultaneously engaging NG2/CSPG4 expressing cells and endogenous T cells and favor the maintenance of the CAR T cell in proximity to the cancer cell to trigger the activation of 25 the engaged T cell. Further provided by the invention is the use of the antibody and the composition of the invention for selective trigger of apoptosis and/or autophagy in cells specifically expressing NG2/CSPG4 recognized by the antibody. A further aspect of present invention refers to the antibody and the composition of the 30 invention for use in the treatment of an apoptosis and/or autophagy-dependent disease, preferably cancer, more preferably solid or hematological cancers, as well as cancerrelated diseases

    Pro-apoptotic anti-NG2/CSPG4 antibodies and their uses for disease therapy

    No full text
    The present invention relates to an antibody capable of binding with high-affinity and high selectivity to the ectodomain of the transmembrane proteoglycan (PG) NG2/CSPG4, preferably to discrete isoforms of NG2/CSPG4. The invention further relates to said antibody possessing the ability to uniquely induce programmed cell death, exhibited as both canonical caspase-dependent apoptosis and authophagy, in NG2/CSPG4-expressing cancer cells. This action being manifested irrespectively of the coaction of other exogenously added factors. Moreover, the present invention refers to a composition comprising the antibody of the invention, in their naked, encapsulated or genetically engineered form, as pharmaceutical excipients. A further aspect of the present invention refers to the anti-NG2/CSPG4 molecule, or any of its isoforms and fragments, provided as proteolytically generated peptides or produced synthetically and/or recombinantly, for the treatment of apoptosis and/or autophagy-dependent diseases, including but not restricted to cancer

    Self-assembly and supramolecular organization of EMILIN

    Get PDF
    The primary structure of human Elastin microfibril interface-located protein (EMILIN), an elastic fiber-associated glycoprotein, consists of a globular C1q domain (gC1q) at the C terminus, a short collagenous stalk, a long region with a high potential for forming coiled-coil alpha helices, and a cysteine-rich N-terminal sequence. It is not known whether the EMILIN gC1q domain is involved in the assembly process and in the supramolecular organization as shown for the similar domain of collagen X. By employing the yeast two-hybrid system the EMILIN gC1q domains interacted with themselves, proving for the first time that this interaction occurs in vivo. The gC1q domain formed oligomers running as trimers in native gels that were less stable than the comparable trimers of the collagen X gC1q domain since they did not withstand heating. The collagenous domain was trypsin-resistant and migrated at a size corresponding to a triple helix under native conditions. In reducing agarose gels, EMILIN also migrated as a trimer, whereas under non-reducing conditions it formed polymers of many millions of daltons. A truncated fragment lacking gC1q and collagenous domains assembled to a much lesser extent, thus deducing that the C-terminal domain(s) are essential for the formation of trimers that finally assemble into large EMILIN multimers

    A newly generated functional antibody identifies Tn antigen as a novel determinant in the cancer cell-lymphatic endothelium interaction

    No full text
    Malignant transformation of epithelial cells is frequently associated with the alteration of glycosylation pathways. Tn is a common tumor-associated carbohydrate antigen present in 90% of human carcinomas and its expression correlates with metastatic potential and poor prognosis. Despite its relevance, the functional role of Tn in tumor biology has not been firmly established probably for the lack of appropriate experimental tools. Our aims were to produce highly reactive monoclonal antibodies against Tn making use of synthetically produced Tn and to test their usefulness for in vivo imaging as well as to define their potential functional activity in tumor cell spread. We immunized mice with Tn clustered on cationized BSA and screened the positive hybridomas with Tn-biotinylated alginate. Enzyme-linked immuno sorbent assay and immunofluorescence assays revealed that the most reactive anti-Tn IgM mAb (2154F12A4) selectively recognized Tn on the MCF7 breast cancer cell line since its binding to the cell membrane was completely abolished by preincubation with purified Tn. Importantly, QDot 800-conjugated mAb injected in MCF7-tumor bearing mice specifically bound to primary tumor lesions as well as to metastases in lymph nodes. In addition, this mAb was able to inhibit cancer cell adhesion to lymphatic endothelium suggesting a novel involvement of Tn in the lymphatic dissemination of cancer cells and hypothesizing future applications in inhibiting lymphatic metastases

    Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro

    Get PDF
    We have carried out a comprehensive molecular mapping of PG-M/versican isoforms V0-V3 in adult human tissues and have specifically investigated how the expression of these isoforms is regulated in endothelial cells in vitro. A survey of 21 representative tissues highlighted a prevalence of V1 mRNA, demonstrated that the relative frequency of expression was V1>V2>V3greater than or equal toV2; and showed that <15% of the tissues transcribed significant levels of all four isoforms. By employing novel and previously described anti-versican antibodies we verified a ubiquitous versican deposition in normal and tumor-associated vascular structures and disclosed differences in the glycanation profiles of versicans produced in different vascular beds. Resting endothelial cells isolated from different tissue sources transcribed several of the versican isoforms but consistently failed to translate these mRNAs into detectable proteoglycans. However, if stimulated with tumor necrosis factor-α or vascular endothelial growth factor, they altered their versican expression by de novo transcribing the V3 isoform and by exhibiting a moderate V1/V2 production. Induced versican synthesis and de novo V3 expression was also observed in endothelial cells elicited to migrate in a wound-healing model in vitro and in angiogenic endothelial cells forming tubule-like structures in Matrigel or fibrin clots. The results suggest that, independent of the degree of vascularization, human adult tissues show a limited expression of versican isoforms V0, V2, and V3 and that endothelial cells may contribute to the deposition of versican in vascular structures, but only following proper stimulation
    corecore