2 research outputs found

    Molecular characterization of Cryptosporidium isolates from humans in Ontario, Canada

    No full text
    Abstract Background Cryptosporidiosis is a gastrointestinal disease with global distribution. It has been a reportable disease in Canada since 2000; however, routine molecular surveillance is not conducted. Therefore, sources of contamination are unknown. The aim of this project was to identify species and subtypes of Cryptosporidium in clinical cases from Ontario, the largest province in Canada, representing one third of the Canadian population, in order to understand transmission patterns. Methods A total of 169 frozen, banked, unpreserved stool specimens that were microscopy positive for Cryptosporidium over the period 2008–2017 were characterized using molecular tools. A subset of the 169 specimens were replicate samples from individual cases. DNA was extracted directly from the stool and nested PCR followed by Sanger sequencing was conducted targeting the small subunit ribosomal RNA (SSU) and glycoprotein 60 (gp60) genes. Results Molecular typing data and limited demographic data were obtained for 129 cases of cryptosporidiosis. Of these cases, 91 (70.5 %) were due to Cryptosporidium parvum and 24 (18.6%) were due to Cryptosporidium hominis. Mixed infections of C. parvum and C. hominis occurred in four (3.1%) cases. Five other species observed were Cryptosporidium ubiquitum (n = 5), Cryptosporidium felis (n = 2), Cryptosporidium meleagridis (n = 1), Cryptosporidium cuniculus (n = 1) and Cryptosporidium muris (n = 1). Subtyping the gp60 gene revealed 5 allelic families and 17 subtypes of C. hominis and 3 allelic families and 17 subtypes of C. parvum. The most frequent subtype of C. hominis was IbA10G2 (22.3%) and of C. parvum was IIaA15G2R1 (62.4%). Conclusions The majority of isolates in this study were C. parvum, supporting the notion that zoonotic transmission is the main route of cryptosporidiosis transmission in Ontario. Nonetheless, the observation of C. hominis in about a quarter of cases suggests that anthroponotic transmission is also an important contributor to cryptosporidiosis pathogenesis in Ontario

    Food and environmental parasitology in Canada:A network for the facilitation of collaborative research

    No full text
    Parasitic diseases are of considerable public health significance in Canada, particularly in rural and remote areas. Food- and water-borne parasites contribute significantly to the overall number of parasitic infections reported in Canada. While data on the incidence of some of these diseases are available, knowledge of the true burden of infection by the causative agents in Canadians is somewhat limited. A number of centers of expertise in Canada study various aspects of parasitology, but few formal societies or networks of parasitologists currently exist in Canada, and previously none focused specifically on food or environmental transmission. The recently established Food and Environmental Parasitology Network (FEPN) brings together Canadian researchers, regulators and public health officials with an active involvement in issues related to these increasingly important fields. The major objectives of the Network include identifying research gaps, facilitating discussion and collaborative research, developing standardized methods, generating data for risk assessments, policies, and guidelines, and providing expert advice and testing in support of outbreak investigations and surveillance studies. Issues considered by the FEPN include contaminated foods and infected food animals, potable and non-potable water, Northern and Aboriginal issues, zoonotic transmission, and epidemiology
    corecore