15 research outputs found

    Engineering reconnaissance following the August 24, 2016 M6.0 Central Italy earthquake

    Get PDF
    An earthquake with a moment magnitude reported as 6.0 from INGV (Istituto Nazionale di Geofisica e Vulcanologia); occurred at 03:36 AM (local time) on 24 August 2016 in the central part of Italy. The epicenter was located at the borders of the Lazio, Abruzzi, Marche and Umbria regions, about 2.5 km north-east of the village of Accumoli and about 100 km from Rome. The hypocentral depth was about 8 km (INGV). We summarize preliminary findings of the Italy-US GEER (Geotechnical Extreme Events Reconnaissance) team, on damage distribution, causative faults, earthquake-induced landslides and rockfalls, building and bridge performance, and ground motion characterization. Our reconnaissance team used multidisciplinary approaches, combining expertise in geology, seismology, geomatics, geotechnical engineering, and structural engineering. Our approach was to combine traditional reconnaissance activities of on-ground recording and mapping of field conditions, with advanced imaging and damage detection routines enabled by state-of-the-art geomatics technology. We anticipate that results from this study, will be useful for future post-earthquake reconnaissance efforts, and improved emergency respons

    Soil-structure interaction on the dynamic response of bridge piers

    No full text
    The paper analyses the effect of Soil-Structure-Interaction (SSI) on the modal dynamic response of simply-supported span girder bridge with wall piers founded on caissons. A parametric analysis has been carried out in the hypothesis of linear elastic behaviour of all materials (soil and structure) to identify the influence of various design factors, such as the height of the pier, the caisson embedment below the ground level and the soil mechanical properties. The goal of the paper is to highlight SSI effects on the dynamic behaviour of bridges. This is a crucial aspect to be accounted for in order to support monitoring activities on bridges, aimed to structural identification or assessment of structure response under serviceability conditions, or also to have preliminary information for the seismic analysis of the bridge

    Correction to: Reconnaissance of geotechnical aspects of the 2016 Central Italy earthquakes

    No full text
    Because of an error during the editorial process the first name initial of author Ernesto Ausilio was incorrectly given as A. (A. Ausilio) in the initial online publication. It should obviously be E. Ausilio. The original article has been corrected

    Reconnaissance of geotechnical aspects of the 2016 Central Italy earthquakes

    No full text
    Between August and November 2016, three major earthquake events occurred in Central Italy. The first event, with M6.1, took place on 24 August 2016, the second (M5.9) on 26 October, and the third (M6.5) on 30 October 2016. Each event was followed by numerous aftershocks. The 24 August event caused massive damages especially to the villages of Arquata del Tronto, Accumoli, Amatrice, and Pescara del Tronto. In total, there were 299 fatalities, generally from collapses of unreinforced masonry dwellings. The October events caused significant new damage in the villages of Visso, Ussita, and Norcia, although not producing fatalities, since the area had largely been evacuated. The Italyâ\u80\u93US Geotechnical Extreme Events Reconnaissance team investigated earthquake effects on slopes, villages, and major infrastructures. The approach adopted to carry out post-earthquake reconnaissance surveys was to combine traditional reconnaissance activities of on-ground evidences and mapping of field conditions with advanced imaging and damage detection routines enabled by state-of-the-art geomatics technology. Presented herein are the outcomes of the post-event reconnaissance surveys conducted after both the August main shock and the October events, focusing on geotechnical aspects, such as earthquake-triggered slope failures, mud volcanoes, performance of different geotechnical structures (i.e., dams, retaining walls, rockfall barriers, road embankments) and building damage patterns related to site amplification
    corecore