235 research outputs found

    Sperm morphological abnormalities in autosomal dominant polycystic kidney disease are associated with the Hippo signaling pathway via PC1

    Get PDF
    BackgroundAutosomal dominant polycystic kidney disease (ADPKD) is a hereditary kidney disorder mostly caused by mutations in PKD1 or PKD2 genes. Here, we report thirteen ADPKD males with infertility and investigated the sperm morphological defects associated with PC1 disruption.MethodsTargeted next-generation sequencing was performed to detect PKD1 variants in patients. Sperm morphology was observed by immunostaining and transmission electron microscopy, and the sperm motility was assessed using the computer-assisted sperm analysis system. The Hippo signaling pathway was analyzed with by quantitative reverse transcription polymerase chain reaction (qPCR) and western blotting in vitro.ResultsThe ADPKD patients were infertile and their sperm tails showed morphological abnormalities, including coiled flagella, absent central microtubules, and irregular peripheral doublets. In addition, the length of sperm flagella was shorter in patients than in controls of in in. In vitro, ciliogenesis was impaired in Pkd1-depleted mouse kidney tubule cells. The absence of PC1 resulted in a reduction of MST1 and LATS1, leading to nuclear accumulation of YAP/TAZ and consequently increased transcription of Aurka. which might promote HDAC6-mediated ciliary disassembly.ConclusionOur results suggest the dysregulated Hippo signaling significantly contributes to ciliary abnormalities in and may be associated with flagellar defects in spermatozoa from ADPKD patients

    An atlas of DNA methylomes in porcine adipose and muscle tissues

    Get PDF
    It is evident that epigenetic factors, especially DNA methylation, have essential roles in obesity development. Here, using pig as a model, we investigate the systematic association between DNA methylation and obesity. We sample eight variant adipose and two distinct skeletal muscle tissues from three pig breeds living within comparable environments but displaying distinct fat level. We generate 1,381 Gb of sequence data from 180 methylated DNA immunoprecipitation libraries, and provide a genome-wide DNA methylation map as well as a gene expression map for adipose and muscle studies. The analysis shows global similarity and difference among breeds, sexes and anatomic locations, and identifies the differentially methylated regions. The differentially methylated regions in promoters are highly associated with obesity development via expression repression of both known obesity-related genes and novel genes. This comprehensive map provides a solid basis for exploring epigenetic mechanisms of adipose deposition and muscle growth

    ACE2 in tumor cells and tumor vasculature: Negligible intercellular transfer from cancer cells into endothelial cells

    Get PDF
    Cancer patients are more susceptible to severe coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Angiotensin-converting enzyme 2 (ACE2) is the functional host receptor for SARS-CoV-2 entering into human cells. Bioinformatics’ analyses have revealed that ACE2 is upregulated in some cancer cells. In the present study, we evaluated ACE2 protein expression levels in several common malignancies compared to non-cancerous normal tissues. ACE2 expression was elevated in colorectal adenocarcinoma, pancreatic adenocarcinoma, gastric adenocarcinoma, and papillary renal cell carcinoma cancer. Yet, it was suppressed in chromophobe renal cell carcinoma, testicular germ cell tumors, and papillary thyroid carcinoma. Two tumor tissue microarrays were used to evaluate the prognostic value of ACE2 expression in patients with gastric adenocarcinoma, and colorectal adenocarcinoma without COVID-19. No significant survival benefit was found for patients with overexpression of ACE2 in the tumor. In the tumor vasculature, ACE2 expression was observed in only 54% of the tumor micro-vessels. Using an in vitro co-culture of endothelial cells and tumor cells overexpressing fusion protein ACE2-red fluorescent protein, we did not observe any clear and convincing intercellular transfer of ACE2 from cancer cells into endothelial cells. In summary, alteration of ACE2 expression was found in common malignancies, but there is no evidence of intercellular transfer of ACE2 from cancer cells to endothelial cells

    Blocking TLR2 Activity Attenuates Pulmonary Metastases of Tumor

    Get PDF
    Background: Metastasis is the most pivotal cause of mortality in cancer patients. Immune tolerance plays a crucial role in tumor progression and metastasis. Methods and Findings: In this study, we investigated the potential roles and mechanisms of TLR2 signaling on tumor metastasis in a mouse model of intravenously injected B16 melanoma cells. Multiple subtypes of TLRs were expressed on B16 cells and several human cancer cell lines; TLR2 mediated the invasive activity of these cells. High metastatic B16 cells released more heat shock protein 60 than poor metastatic B16-F1 cells. Importantly, heat shock protein 60 released by tumor cells caused a persistent activation of TLR2 and was critical in the constitutive activation of transcription factor Stat3, leading to the release of immunosuppressive cytokines and chemokines. Moreover, targeting TLR2 markedly reduced pulmonary metastases and increased the survival of B16-bearing mice by reversing B16 cells induced immunosuppressive microenvironment and restoring tumor-killing cells such as CD8 + T cells and M1 macrophages. Combining an anti-TLR2 antibody and a cytotoxic agent, gemcitabine, provided a further improvement in the survival of tumor-bearing mice. Conclusions and Significance: Our results demonstrate that TLR2 is an attractive target against metastasis and that targeting immunosuppressive microenvironment using anti-TLR2 antibody is a novel therapeutic strategy for combating
    • …
    corecore