531 research outputs found

    Urinary DNA Lesions as a Biomarker for Assessing Male Reproductive Health

    Get PDF
    The study aimed to examine whether urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) could serve as a biomarker for assessing sperm DNA integrity. Urine and semen samples were collected from 124 coke-oven workers, who had chronically been exposed to polycyclic aromatic hydrocarbons (PAHs), from a steel plant in Kaohsiung, Taiwan. The coke-oven workers were divided into two subgroups: topside-oven workers and side-oven workers. Sperm DNA integrity was assessed in terms of DNA fragmentation and 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodGuo). Urine samples were used to detect 1-hydroxypyrene (1-OHP) and urinary 8-OHdG, which served to assess exposure to PAHs and the whole body oxidative stress, respectively. Urinary 1-OHP concentrations were significantly higher in the topside-oven workers than the side-oven workers (p = 0.02). Sperm 8-oxodGuo concentrations were correlated with percentages of sperm fragmentation (p = 0.044), but urinary 8-OHdG levels failed to correlate with sperm 8-oxodGuo levels and with percentages of fragmentation. In conclusion, exposure to PAHs was linked to increased oxidative stress on sperm. However, urinary 8-OHdG may not be a suitable biomarker for examining sperm DNA damage associated with oxidative stress

    8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2\u27-deoxyguanosine concentrations in various human body fluids: implications for their measurement and interpretation

    Get PDF
    8-Oxo-7,8-dihydro-2\u27-deoxyguanosine (8-oxodGuo) is the most investigated product of oxidatively damaged DNA lesion that has been associated with the development of aging, cancer and some degenerative diseases. Here, we present the first liquid chromatography-tandem mass spectrometry method that enables the simultaneous measurement of its repair products in plasma and saliva, namely 8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxodGuo. Using this method, we investigated the underlying transport mechanism of the repair products of oxidatively damaged DNA between cellular compartments and biological matrices. Plasma, saliva and urine samples were collected concurrently from 57 healthy subjects. Various deproteinization methods were evaluated, and the precipitants acetonitrile and sodium hydroxide-methanol were, respectively, selected for plasma and saliva samples due to their effect on recovery efficiencies and chromatography. The mean baseline concentrations of 8-oxoGua and 8-oxodGuo in plasma were demonstrated to be 0.21 and 0.016 ng/mL, respectively, while in saliva they were 0.85 and 0.010 ng/mL, respectively. A relatively high concentration of 8-oxoGua was found in saliva with a concentration factor (CF, concentration ratio of saliva to plasma) of 4 as compared to that of 8-oxodGuo (CF: 0.6), implying that 8-oxoGua in plasma may be actively transported to saliva, whereas 8-oxodGuo was most dependent on a passive diffusion. Good correlations between urine and plasma concentrations were observed for 8-oxoGua and 8-oxodGuo, suggesting that blood was a suitable matrix in addition to urine. Significant correlation between 8-oxoGua and 8-oxodGuo in urine was only observed when the concentrations were not corrected for urinary creatinine, raising the issue of applicability of urinary creatinine to adjust 8-oxoGua concentrations

    8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2\u27-deoxyguanosine concentrations in various human body fluids: implications for their measurement and interpretation

    Get PDF
    8-Oxo-7,8-dihydro-2\u27-deoxyguanosine (8-oxodGuo) is the most investigated product of oxidatively damaged DNA lesion that has been associated with the development of aging, cancer and some degenerative diseases. Here, we present the first liquid chromatography-tandem mass spectrometry method that enables the simultaneous measurement of its repair products in plasma and saliva, namely 8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxodGuo. Using this method, we investigated the underlying transport mechanism of the repair products of oxidatively damaged DNA between cellular compartments and biological matrices. Plasma, saliva and urine samples were collected concurrently from 57 healthy subjects. Various deproteinization methods were evaluated, and the precipitants acetonitrile and sodium hydroxide-methanol were, respectively, selected for plasma and saliva samples due to their effect on recovery efficiencies and chromatography. The mean baseline concentrations of 8-oxoGua and 8-oxodGuo in plasma were demonstrated to be 0.21 and 0.016 ng/mL, respectively, while in saliva they were 0.85 and 0.010 ng/mL, respectively. A relatively high concentration of 8-oxoGua was found in saliva with a concentration factor (CF, concentration ratio of saliva to plasma) of 4 as compared to that of 8-oxodGuo (CF: 0.6), implying that 8-oxoGua in plasma may be actively transported to saliva, whereas 8-oxodGuo was most dependent on a passive diffusion. Good correlations between urine and plasma concentrations were observed for 8-oxoGua and 8-oxodGuo, suggesting that blood was a suitable matrix in addition to urine. Significant correlation between 8-oxoGua and 8-oxodGuo in urine was only observed when the concentrations were not corrected for urinary creatinine, raising the issue of applicability of urinary creatinine to adjust 8-oxoGua concentrations

    Sperm quality and DNA integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons

    Get PDF
    Objectives: The objective of this study was to assess sperm quality and deoxyribonucleic acid (DNA) integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons (PAHs) as compared to control subjects. Material and methods: The coke oven workers (N = 52) and administrative staff (N = 35) of a steel plant served as the exposed and control groups, respectively. Exposure to PAHs was assessed by measuring 1-hydroxypyren. Analysis of sperm quality (concentration, motility, vitality, and morphology) was performed simultaneously with sperm DNA integrity analysis, including DNA fragmentation, denaturation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxo-dGuo). A questionnaire was conducted to collect demographic and potential confounding data. Results: The coke oven workers had lower percentages of sperm motility, vitality and normal morphology than the control group, but the difference was not significant. For DNA integrity, the coke oven workers had significantly higher concentrations of bulky DNA adducts and 8-oxo-dGuo than the control subjects (p = 0.009 and p = 0.048, respectively). However, DNA fragmentation percentages did not significantly increase as compared to those in the subjects from the control group (p = 0.232). There was no correlation between sperm quality parameters and DNA integrity indicators. Conclusions: Occupational exposure of the coke oven workers to PAHs was associated with decreased sperm DNA integrity. Int J Occup Med Environ Health 2016;29(6):915–92

    Taiwan Oscillation Network

    Get PDF
    The Taiwan Oscillation Network (TON) is a ground-based network to measure solar intensity oscillations to study the internal structure of the Sun. K-line full-disk images of 1000 pixels diameter are taken at a rate of one image per minute. Such data would provide information onp-modes withl as high as 1000. The TON will consist of six identical telescope systems at proper longitudes around the world. Three telescope systems have been installed at Teide Observatory (Tenerife), Huairou Solar Observing Station (near Beijing), and Big Bear Solar Observatory (California). The telescopes at these three sites have been taking data simultaneously since October of 1994. Anl – v diagram derived from 512 images is included to show the quality of the data

    Association between oxidized nucleobases and mitochondrial DNA damage with long-term mortality in patients with sepsis

    Get PDF
    BACKGROUND: Sepsis not only leads to short-term mortality during hospitalization, but is also associated with increased mortality during long-term follow-up after hospital discharge. Metabolic stress during sepsis may cause oxidative damage to both nuclear and mitochondrial DNA (mtDNA) and RNA, which could affect long-term health and life span. Therefore, the aim of this study was to assess the association of sepsis with oxidized nucleobases and (mt)DNA damage and long-term all-cause mortality in septic patients. METHODS: 91 patients with sepsis who visited the emergency department (ED) of the University Medical Center Groningen between August 2012 and June 2013 were included. Urine and plasma were collected during the ED visit. Septic patients were matched with 91 healthy controls. Death rate was obtained until June 2020.The degree of oxidation of DNA, RNA and free nucleobases were assessed in urine by mass-spectrometry. Lipid peroxidation was assessed in plasma using a TBAR assay. Additionally, plasma levels of mtDNA and damage to mtDNA were determined by qPCR. RESULTS: Sepsis patients denoted higher levels of oxidated DNA, RNA, free nucleobases and lipid peroxidation than controls (all p < 0.01). Further, sepsis patients displayed an increase in plasma mtDNA with an increase in mtDNA damage compared to matched controls (p < 0.01). Kaplan meier survival analyses revealed that high degrees of RNA- and nucleobase oxidation were associated with higher long-term all-cause mortality after sepsis (p < 0.01 and p = 0.01 respectively). Of these two, high RNA oxidation was associated with long-term all-cause mortality, independent of adjustment for age, medical history and sepsis severity (HR 1.29 [(1.17-1.41, 95% CI] p < 0.01). CONCLUSIONS: Sepsis is accompanied with oxidation of nuclear and mitochondrial DNA and RNA, where RNA oxidation is an independent predictor of long-term all-cause mortality. In addition, sepsis causes mtDNA damage and an increase in cell free mtDNA in plasma

    Sperm DNA Oxidative Damage and DNA Adducts

    Get PDF
    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n =112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2\u27-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers\u27 percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm
    • …
    corecore