4,943 research outputs found

    The effects of dog management on Echinococcus spp. prevalence in villages on the eastern Tibetan Plateau, China

    Get PDF
    Background The pastoral area of the eastern Tibetan plateau is a very important human echinococcosis endemic region. Domestic dogs are the main definitive host for the transmission of Echinococcus granulosus sensu lato (s.1.) and E. multilocularis to humans. To control the infection risks, a national-level canine echinococcosis prevention and control program has been implemented since 2015 in Shiqu County, Sichuan, China, The objective of this investigation was to evaluate its effect on Echinococcus spp. prevalence in dogs. Methods We surveyed 69 households with 84 owned dogs, for dog keeping information in the villages of Rizha and Eduoma. A total of 105 dog fecal samples, consisting of 75 from owned dogs and 30 unknown dog fecal samples were collected between 2015 and 2017 to determine Echinococcus spp. prevalence using copro-PCR. Eight variables based on household surveys were included into a logistic regression model for significantly relevant factors to canine echinococcosis prevalence in dogs. Results The overall Echinococcus spp. copro-DNA prevalence decreased significantly in dogs from 51.2% (2015) to 20.0% (2017) in Rizha, and insignificantly from 11.5% (2016) to 4.3% (2017) in Eduoma. Echinococcus multilocularis was the most prevalent species continually detected during the entire research period, while E. granulosus was rare and not detected in 2017. Echinococcus shiquicus prevalence was as high as E. multilocularis , although only detected in 2015 in Rizha. Unleashed dog feces were mainly collected in Rizha Village in 2015. Although 93.2% of owned dogs were leashed, and the monthly praziquantel dosing rate reached 97%, E. multilocularis infection could still be detected in 11.1% of owned dogs in 2017. Monthly deworming, leashing dogs 24h per day, and the avoidance of dogs feeding on livestock viscera are significant measures to prevent canine echinococcosis infection in owned dogs. Conclusion Carrying out a canine echinococcosis prevention and control program can significantly decrease the Echinococcus prevalence. The potential contact between leashed dogs and wild small mammals is still a risk to re-infect owned dogs. This study shows that the long term application of regular dog dosing in the vast remote echinococcosis endemic areas of west China is still challenging

    Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    Full text link
    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated by using a method of the generalized tortoise coordinate transformation. Both the location and temperature of the event horizon depend on the time and on the angles. They coincide with previous results, but the thermal radiation spectrum of massless spinor particles displays a kind of spin-acceleration coupling effect.Comment: 8 pages, no figure, revtex 4.0, revisted version with typesetting errors and misprint correcte

    Journal of Energy Chemistry

    Get PDF
    2H-MoS2 is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions, such as the hydrogen evolution reaction (HER). The performance is largely limited by the chemically inert basal plane, which is unfavorable for surface adsorption and reactions. Herein, we report a facile method to boost the HER activities of 2H-MoS2 by coupling with epitaxial Bi2Te3 topological insulator films. The as-obtained MoS2/ Bi2Te3/SrTiO3 catalyst exhibits prominent HER catalytic activities compared to that of pure MoS2 structures, with a 189 mV decrease in the overpotential required to reach a current density of 10 mA cm−2 and a low Tafel slope of 58 mV dec−1. Theoretical investigations suggest that the enhanced catalytic activity originates from the charge redistribution at the interface between the Bi2Te3topological insulator films and the MoS2 layer. The delocalized sp-derived topological surface states could denote electrons to the MoS2 layer and activate the basal plane for hydrogen adsorption. This study demonstrates the potential of manipulating topological surface states to design high-performance electrocatalysts. © 2021 Science Pres

    Pressure-induced superconductivity and modification of Fermi surface in type-II Weyl semimetal NbIrTe<sub>4</sub>

    Get PDF
    Weyl semimetals (WSMs) hosting Weyl points (WPs) with different chiralities attract great interest as an object to study chirality-related physical properties, topological phase transitions, and topological superconductivity. Quantum oscillation measurements and theoretical calculations imply that the type-II WPs in NbIrTe4 are robust against the shift of chemical potential making it a good material for pressure studies on topological properties. Here we report the results of electrical transport property measurements and Raman spectroscopy studies under pressures up to 65.5 GPa accompanied by theoretical electronic structure calculations. Hall resistivity data reveal an electronic transition indicated by a change of the charge carrier from multiband character to hole-type at similar to 12 GPa, in agreement with the calculated Fermi surface. An onset of superconducting transition is observed at pressures above 39 GPa, with critical temperature increasing as pressure increases. Moreover, theoretical calculations indicate that WPs persist up to highly reduced unit cell volume (-17%), manifesting that NbIrTe4 is a candidate of topological superconductor

    STED microscopy reveals in-situ photoluminescence properties of single nanostructures in densely perovskite thin films.

    Full text link
    All-inorganic perovskite nanomaterials have attracted much attention recently due to their prominent optical performance and potential application for optoelectronic devices. The carriers dynamics of all-inorganic perovskites has been the research focus because the understanding of carriers dynamics process is of critical importance for improving the fluorescence conversion efficiency. While photophysical properties of excited carrier are usually measured at the macroscopic scale, it is necessary to probe the in-situ dynamics process at the nanometer scale and gain deep insights into the photophysical mechanisms and their localized dependence on the thin-film nanostructures. Stimulated emission depletion (STED) nanoscopy with super-resolution beyond the diffraction limit can directly provide explicit information at a single particle level or nanometer scale. Through this unique technique, we firstly study the in-situ dynamics process of single CsPbBr3 nanocrystals(NCs) and nanostructures embedded inside high-dense samples. Our findings reveal the different physical mechanisms of PL blinking and antibunching for single CsPbBr3 NCs and nanostructures that correlate with thin-film nanostructural features (e.g. defects, grain boundaries and carrier mobility). The insights gained into such nanostructure-localized physical mechanisms are critically important for further improving the material quality and its corresponding device performance

    Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties

    Get PDF
    Background: Advanced structure-activity relationship (SAR) modeling can be used as an alternative tool for identification of skin sensitizers and in improvement of the medical diagnosis and more effective practical measures to reduce the causative chemical exposures. It can also circumvent ethical concern of using animals in toxicological tests, and reduce time and cost. Compounds with aniline or phenol moieties represent two large classes of frequently skin sensitizing chemicals but exhibiting very variable, and difficult to predict, potency. The mechanisms of action are not well-understood. Methods: A group of mechanistically hard-to-be-classified aniline and phenol chemicals were collected. An in silico model was established by statistical analysis of quantum descriptors for the determination of the relationship between their chemical structures and skin sensitization potential. The sensitization mechanisms were investigated based on the features of the established model. Then the model was utilized to analyze a subset of FDA approved drugs containing aniline and/or phenol groups for prediction of their skin sensitization potential. Results and discussion: A linear discriminant model using the energy of the highest occupied molecular orbital (ΔHOMO) as the descriptor yielded high prediction accuracy. The contribution of ΔHOMO as a major determinant may suggest that autoxidation or free radical binding could be involved. The model was further applied to predict allergic potential of a subset of FDA approved drugs containing aniline and/or phenol moiety. The predictions imply that similar mechanisms (autoxidation or free radical binding) may also play a role in the skin sensitization caused by these drugs. Conclusions: An accurate and simple quantum mechanistic model has been developed to predict the skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol chemicals. The model could be useful for the skin sensitization potential predictions of a subset of FDA approved drugs
    • 

    corecore