8,145 research outputs found

    Challenges of Primary Frequency Control and Benefits of Primary Frequency Response Support from Electric Vehicles

    Get PDF
    As the integration of wind generation displaces conventional plants, system inertia provided by rotating mass declines, causing concerns over system frequency stability. This paper implements an advanced stochastic scheduling model with inertia-dependent fast frequency response requirements to investigate the challenges on the primary frequency control in the future Great Britain electricity system. The results suggest that the required volume and the associated cost of primary frequency response increase significantly along with the increased capacity of wind plants. Alternative measures (e.g. electric vehicles) have been proposed to alleviate these concerns. Therefore, this paper also analyses the benefits of primary frequency response support from electric vehicles in reducing system operation cost, wind curtailment and carbon emissions

    Secure and anonymous mobile ad-hoc networks

    Get PDF
    A mobile ad-hoc network (MANET) is a wireless network made up of mobile hosts that do not require any fixed infrastructure to communicate. The major features of ad-hoc networks is self-organization and dynamics in user participation. Because of these features, the security in ad-hoc becomes a challenge. In this paper, we consider an interesting scenario, where an arbitrary number of nodes in MANET can dynamically form an anonymous group that exhibits the following features: (1) any outsider can be convinced that the node is indeed in the group; (2) any outsider can send a message back to the node in the group

    Unsupervised domain adaptation for position-independent IMU based gait analysis

    Get PDF
    Inertial measurement units (IMUs) together with advanced machine learning algorithms have enabled pervasive gait analysis. However, the worn positions of IMUs can be varied due to movements, and they are difficult to standardize across different trials, causing signal variations. Such variation contributes to a bias in the underlying distribution of training and testing data, and hinder the generalization ability of a computational gait analysis model. In this paper, we propose a position-independent IMU based gait analysis framework based on unsupervised domain adaptation. It is based on transferring knowledge from the trained data positions to a novel position without labels. Our framework was validated on gait event detection and pathological gait pattern recognition tasks based on different computational models and achieved consistently high performance on both tasks

    Cryptanalysis on two certificates signature schemes

    Full text link
    Certificateless cryptography has attracted a lot of attention from the research community, due to its applicability in information security. In this paper, we analyze two recently proposed certificateless signature schemes and point out their security flaws. In particular, we demonstrate universal forgeries against these schemes with known message attack

    Specific-heat study of superconducting and normal states in FeSe1-xTex (0.6<=x<=1) single crystals: Strong-coupling superconductivity, strong electron-correlation, and inhomogeneity

    Full text link
    The electronic specific heat of as-grown and annealed single-crystals of FeSe1-xTex (0.6<=x<=1) has been investigated. It has been found that annealed single-crystals with x=0.6-0.9 exhibit bulk superconductivity with a clear specific-heat jump at the superconducting (SC) transition temperature, Tc. Both 2Delta_0/kBTc [Delta_0: the SC gap at 0 K estimated using the single-band BCS s-wave model] and Delta C/(gamma_n-gamma_0)Tc [Delta C$: the specific-heat jump at Tc, gamma_n: the electronic specific-heat coefficient in the normal state, gamma_0: the residual electronic specific-heat coefficient at 0 K in the SC state] are largest in the well-annealed single-crystal with x=0.7, i.e., 4.29 and 2.76, respectively, indicating that the superconductivity is of the strong coupling. The thermodynamic critical field has also been estimated. gamma_n has been found to be one order of magnitude larger than those estimated from the band calculations and increases with increasing x at x=0.6-0.9, which is surmised to be due to the increase in the electronic effective mass, namely, the enhancement of the electron correlation. It has been found that there remains a finite value of gamma_0 in the SC state even in the well-annealed single-crystals with x=0.8-0.9, suggesting an inhomogeneous electronic state in real space and/or momentum space.Comment: 22 pages, 1 table, 6 figures, Version 2 has been accepted for publication in J. Phys. Soc. Jp

    Possible high temperature superconductivity in Ti-doped A-Sc-Fe-As-O (A= Ca, Sr) system

    Full text link
    We report a systematic study on the effect of partial substitution of Sc3+^{3+} by Ti4+^{4+} in Sr2_{2}ScFeAsO3_{3}, Ca2_{2}ScFeAsO3_{3} and Sr3_{3}Sc2_{2}Fe2_{2}As2_{2}O5_{5} on their electrical properties. High level of doping results in an increased carrier concentration and leads to the appearance of superconductivity with the onset of Tc_{c} up to 45 K.Comment: 8 pages, 4 figures, 2 new figure

    Pressure Effect on the superconducting properties of LaO_{1-x}F_{x}FeAs(x=0.11) superconductor

    Full text link
    Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.Comment: 7 pages, 4 figure

    Pressure-induced superconductivity and modification of Fermi surface in type-II Weyl semimetal NbIrTe<sub>4</sub>

    Get PDF
    Weyl semimetals (WSMs) hosting Weyl points (WPs) with different chiralities attract great interest as an object to study chirality-related physical properties, topological phase transitions, and topological superconductivity. Quantum oscillation measurements and theoretical calculations imply that the type-II WPs in NbIrTe4 are robust against the shift of chemical potential making it a good material for pressure studies on topological properties. Here we report the results of electrical transport property measurements and Raman spectroscopy studies under pressures up to 65.5 GPa accompanied by theoretical electronic structure calculations. Hall resistivity data reveal an electronic transition indicated by a change of the charge carrier from multiband character to hole-type at similar to 12 GPa, in agreement with the calculated Fermi surface. An onset of superconducting transition is observed at pressures above 39 GPa, with critical temperature increasing as pressure increases. Moreover, theoretical calculations indicate that WPs persist up to highly reduced unit cell volume (-17%), manifesting that NbIrTe4 is a candidate of topological superconductor
    corecore