473 research outputs found

    Charge states, triple points and quadruple points in an InAs nanowire triple quantum dot revealed by an integrated charge sensor

    Full text link
    A serial triple quantum dot (TQD) integrated with a quantum dot (QD) charge sensor is realized from an InAs nanowire via a fine finger-gate technique. The complex charge states and intriguing properties of the device are studied in the few-electron regime by direct transport measurements and by charge-sensor detection measurements. The measurements of the charge stability diagram for a capacitively coupled, parallel double-QD formed from a QD in the TQD and the sensor QD show a visible capacitance coupling between the TQD and the sensor QD, indicating a good sensitivity of the charge sensor. The charge stability diagrams of the TQD are measured by the charge sensor and the global features seen in the measured charge stability diagrams are well reproduced by the simultaneous measurements of the direct transport current through the TQD and by the simulation made based on an effective capacitance network model. The complex charge stability diagrams of the TQD are measured in detail with the integrated charge sensor in an energetically degenerate region, where all the three QDs are on or nearly on resonance, and the formations of quadruple points and of all possible eight charge states are observed. In addition, the operation of the TQD as a quantum cellular automata is demonstrated and discussed.Comment: 18 pages, 4 figures, Supplementary Information include

    Impact of thermal processing on dietary flavonoids

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGFlavonoids are widely distributed in natural products and foods as a class of polyphenols. They processed diverse bioactivities, including anti-inflammation activity, antiaging activity, and antioxidant activity. The foods rich in flavonoids are usually consumed after thermal processing. However, flavonoids are commonly vulnerable under thermal processing, and it could cause various influences on their stability and bioactivities. Therefore, in this review, the effects of thermal processing on thermal stability and bioactivities of dietary flavonoids from different food sources were first summarized. The strategies to improve thermal stability of dietary flavonoids were then discussed. Noticeably, the effect of some of the promising thermal technologies on dietary flavonoids was also clarified preliminarily in the current review. The promising thermal technologies may be an alternative to conventional thermal processing technologies.Agencia Estatal de Investigación | Ref. RYC2020-030365-

    Effects on Physicochemical and Dissolution Characteristics of Lentinus edodes Stem Powder by Jet Milling

    Get PDF
    In order to increase the utilization rate of shiitake mushroom by-products, the shiitake mushroom stem was crushed after superfine grinding with a jet mill, with coarse powder and 40 mesh powder as the control. The effect of jet milling on the physicochemical properties of shiitake mushroom stem powder and the dissolution amount of functional components represented by ergosterol and polysaccharides were studied. The cumulative dissolution rate of ergosterol and polysaccharides was fitted by the Weibull model. The results showed that after superfine grinding by jet milling, the average particle size (D50) of powder decreased to 3.21 μm, bulk density, tap density and L* value increased from 0.15 g/mL to 0.25 g/mL, 0.23 g/mL to 0.42 g/mL, 65.31 to 73.49, respectively. The superfine powder fluidity, water holding capacity and swelling capacity were significantly enhanced (P<0.05). The cumulative dissolution 50% of the time (T50) of ergosterol and polysaccharide in superfine powder was reduced by 2.56 min and 8.14 min, respectively, compared with coarse powder. And cumulative dissolution rate at 45 min (Q45) increased by 10.88% and 19.15%, respectively. The powder properties and the dissolution rate of the functional ingredients were improved, after the jet milling to treat the shiitake mushroom stem, which was conducive to the comprehensive utilization of shiitake mushroom by-products

    FLAG: Faster Learning on Anchor Graph with Label Predictor Optimization

    No full text

    Transcriptome Analysis on Chlorpyrifos Detoxification in \u3cem\u3eUronema marinum\u3c/em\u3e (Ciliophora, Oligohymenophorea)

    No full text
    Chlorpyrifos (CPF) pollution has drawn widespread concerns in aquatic environments due to its risks to ecologic system, however, the response mechanisms of ciliates to CPF pollution were poorly studied. In our current work, the degradation of CPF by ciliates and the morphological changes of ciliates after CPF exposure were investigated. In addition, the transcriptomic profiles of the ciliate Uronema marinum, with and without exposure with CPF, were detected using digital gene expression technologies. De novo transcriptome assembly 166,829,634 reads produced from three groups (untreated, CPF treatment at 12 h and 24 h) by whole transcriptome sequencing (RNA-Seq). Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were analyzed in all unigenes and different expression genes to identify their biological functions and processes. Furthermore, the results indicated that genes related to the stress response, cytoskeleton and cell structure proteins, and antioxidant systems might play an important role in the resistance mechanism of ciliates. The enzyme activities of SOD and GST after CPF stress were also analyzed, and the result showed the good antioxidant capacity of SOD and GST in ciliates inferred from the increase of the activities of the two enzymes. The ciliate Uronema marinum showed a resistance response to chlorpyrifos stress at the transcriptomic level in the present work, which indicates that ciliates can be considered as a potential bioremediation agent

    Multi Step Transient Hybrid Simulation Framework Design and Practical Engineering Application for AC / DC Power Grid

    No full text
    Based on the large power grid simulation and the existing security prevention and control mode, this paper further integrates the multi-step transient hybrid simulation architecture computing technology to research the high-performance analysis and situational awareness simulation technology of interconnected AC / DC large power grid security and stability characteristics. So as to realize the “panoramic situational awareness, wide area coordinated control, flexible and efficient service” of large power grid, and improve the super large scale power grid Comprehensive security defense and intelligent monitoring level of panoramic, multi-dimensional and three-dimensional

    Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25Cr-1Mo-0.25V Steel and Welds after Annealing

    No full text
    Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence, it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work, the fracture behavior of 2.25Cr-1Mo-0.25V steel and welds was studied by three-point bending tests under hydrogen-free and hydrogen-charged conditions. The immersion charging method was employed to pre-charge hydrogen inside specimen and the fracture toughness of these joints was evaluated quantitatively. The microstructure and grain size of the specimens were observed by scanning electron microscopy (SEM) and by metallurgical microscopy to investigate the HE mechanisms. It was found that fracture toughness for both the base metal (BM) and the weld zone (WZ) significantly decreased under hydrogen-charged conditions due to the coexistence of the hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms. Moreover, the formation and growth of primary voids were observed in the BM, leading to a superior fracture toughness. In addition, the BM compared to the WZ shows superior resistance to HE because the finer grain size in the BM leads to a larger grain boundary area, thus distributing more of the diffusive hydrogen trapped in the grain boundary and reducing the hydrogen content
    corecore