12,489 research outputs found

    Thermodynamic properties and phase diagrams of spin-1 quantum Ising systems with three-spin interactions

    Full text link
    The spin-1 quantum Ising systems with three-spin interactions on two-dimensional triangular lattices are studied by mean-field method. The thermal variations of order parameters and phase diagrams are investigated in detail. The stable, metastable and unstable branches of the order parameters are obtained. According to the stable conditions at critical point, we find that the systems exhibit tricritical points. With crystal field and biquadratic interactions, the system has rich phase diagrams with single reentrant or double reentrant phase transitions for appropriate ranges of the both parameters.Comment: 10 pages, 5 figure

    Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    Get PDF
    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic

    Non-Abelian Proca model based on the improved BFT formalism

    Full text link
    We present the newly improved Batalin-Fradkin-Tyutin (BFT) Hamiltonian formalism and the generalization to the Lagrangian formulation, which provide the much more simple and transparent insight to the usual BFT method, with application to the non-Abelian Proca model which has been an difficult problem in the usual BFT method. The infinite terms of the effectively first class constraints can be made to be the regular power series forms by ingenious choice of XαβX_{\alpha \beta} and ωαβ\omega^{\alpha \beta}-matrices. In this new method, the first class Hamiltonian, which also needs infinite correction terms is obtained simply by replacing the original variables in the original Hamiltonian with the BFT physical variables. Remarkably all the infinite correction terms can be expressed in the compact exponential form. We also show that in our model the Poisson brackets of the BFT physical variables in the extended phase space are the same structure as the Dirac brackets of the original phase space variables. With the help of both our newly developed Lagrangian formulation and Hamilton's equations of motion, we obtain the desired classical Lagrangian corresponding to the first class Hamiltonian which can be reduced to the generalized St\"uckelberg Lagrangian which is non-trivial conjecture in our infinitely many terms involved in Hamiltonian and Lagrangian.Comment: Notable improvements in Sec. I

    Low Scale Non-universal, Non-anomalous U(1)'_F in a Minimal Supersymmetric Standard Model

    Full text link
    We propose a non-universal U(1)'_F symmetry combined with the Minimal Supersymmetric Standard Model. All anomaly cancellation conditions are satisfied without exotic fields other than three right-handed neutrinos. Because our model allows all three generations of chiral superfields to have different U(1)'_F charges, upon the breaking of the U(1)'_F symmetry at a low scale, realistic masses and mixing angles in both the quark and lepton sectors are obtained. In our model, neutrinos are predicted to be Dirac fermions and their mass ordering is of the inverted hierarchy type. The U(1)'_F charges of the chiral super-fields also naturally suppress the mu term and automatically forbid baryon number and lepton number violating operators. While all flavor-changing neutral current constraints in the down quark and charged lepton sectors can be satisfied, we find that constraint from D0-D0bar turns out to be much more stringent than the constraints from the precision electroweak data.Comment: 21 pages, 2 figures; v2: discussion on sparticle mass spectrum included, 27 pages, 2 figure

    Canonical Charmonium Interpretation for Y(4360) and Y(4660)

    Full text link
    In this work, we consider the canonical charmonium assignments for Y(4360) and Y(4660). Y(4660) is good candidate of 53S1\rm 5 ^3S_1 ccˉc\bar{c} state, the possibility of Y(4360) as a 33D1\rm 3 ^3D_1 ccˉc\bar{c} state is studied, and the charmonium hybrid interpretation of Y(4360) can not be excluded completely. We evaluate the e+e−e^{+}e^{-} leptonic widths, E1 transitions, M1 transitions and the open flavor strong decays of Y(4360) and Y(4660). Experimental tests for the charmonium assignments are suggested.Comment: 32 pages, 4 figure

    BRST Quantization of the Proca Model based on the BFT and the BFV Formalism

    Full text link
    The BRST quantization of the Abelian Proca model is performed using the Batalin-Fradkin-Tyutin and the Batalin-Fradkin-Vilkovisky formalism. First, the BFT Hamiltonian method is applied in order to systematically convert a second class constraint system of the model into an effectively first class one by introducing new fields. In finding the involutive Hamiltonian we adopt a new approach which is more simpler than the usual one. We also show that in our model the Dirac brackets of the phase space variables in the original second class constraint system are exactly the same as the Poisson brackets of the corresponding modified fields in the extended phase space due to the linear character of the constraints comparing the Dirac or Faddeev-Jackiw formalisms. Then, according to the BFV formalism we obtain that the desired resulting Lagrangian preserving BRST symmetry in the standard local gauge fixing procedure naturally includes the St\"uckelberg scalar related to the explicit gauge symmetry breaking effect due to the presence of the mass term. We also analyze the nonstandard nonlocal gauge fixing procedure.Comment: 29 pages, plain Latex, To be published in Int. J. Mod. Phys.

    Proton-Antiproton Annihilation in Baryonium

    Full text link
    A possible interpretation of the near-threshold enhancement in the (ppˉ)(p\bar{p})-mass spectrum in J/ψ→γppˉJ/\psi{\to}\gamma p{\bar p} is the of existence of a narrow baryonium resonance X(1860). Mesonic decays of the (ppˉ)(p\bar{p})-bound state X(1860) due to the nucleon-antinucleon annihilation are investigated in this paper. Mesonic coherent states with fixed GG-parity and PP-parity have been constructed . The Amado-Cannata-Dedoder-Locher-Shao formulation(Phys Rev Lett. {\bf 72}, 970 (1994)) is extended to the decays of the X(1860). By this method, the branch-fraction ratios of Br(X→η4π)Br(X\to \eta 4\pi), Br(X→η2π)Br(X\to \eta 2\pi) and Br(X→3η)Br(X\to 3\eta) are calculated. It is shown that if the X(1860) is a bound state of (ppˉ)(p\bar{p}), the decay channel (X→η4π)X\to \eta 4\pi) is favored over (X→η2π)(X\to \eta 2\pi). In this way, we develop criteria for distinguishing the baryonium interpretation for the near-threshold enhancement effects in (ppˉ)(p\bar{p})-mass spectrum in J/ψ→γppˉJ/\psi{\to}\gamma p{\bar p} from other possibilities. Experimental checks are expected. An intuitive picture for our results is discussed.Comment: 19 pages, 3 figure

    Suppression of backward scattering of Dirac fermions in iron pnictides Ba(Fe1−x_{1-x}Rux_xAs)2_2

    Full text link
    We report electronic transport of Dirac cones when Fe is replaced by Ru, which has an isoelectronic electron configuration to Fe, using single crystals of Ba(Fe1−x_{1-x}Rux_xAs)2_2. The electronic transport of parabolic bands is shown to be suppressed by scattering due to the crystal lattice distortion and the impurity effect of Ru, while that of the Dirac cone is not significantly reduced due to the intrinsic character of Dirac cones. It is clearly shown from magnetoresistance and Hall coefficient measurements that the inverse of average mobility, proportional to cyclotron effective mass, develops as the square root of the carrier number (n) of the Dirac cones. This is the unique character of the Dirac cone linear dispersion relationship. Scattering of Ru on the Dirac cones is discussed in terms of the estimated mean free path using experimental parameters.Comment: 6 pages, 3 figures, To be published in Phys. Rev.
    • …
    corecore