12,868 research outputs found

    Non-Maxwellian electron distribution functions due to self-generated turbulence in collisionless guide-field reconnection

    Full text link
    Non-Maxwellian electron velocity space distribution functions (EVDF) are useful signatures of plasma conditions and non-local consequences of collisionless magnetic reconnection. In the past, EVDFs were obtained mainly for antiparallel reconnection and under the influence of weak guide-fields in the direction perpendicular to the reconnection plane. EVDFs are, however, not well known, yet, for oblique (or component-) reconnection in dependence on stronger guide-magnetic fields and for the exhaust (outflow) region of reconnection away from the diffusion region. In view of the multi-spacecraft Magnetospheric Multiscale Mission (MMS), we derived the non-Maxwellian EVDFs of collisionless magnetic reconnection in dependence on the guide-field strength bgb_g from small (bg0b_g\approx0) to very strong (bg=8b_g=8) guide-fields, taking into account the feedback of the self-generated turbulence. For this sake, we carried out 2.5D fully-kinetic Particle-in-Cell simulations using the ACRONYM code. We obtained anisotropic EVDFs and electron beams propagating along the separatrices as well as in the exhaust region of reconnection. The beams are anisotropic with a higher temperature in the direction perpendicular rather than parallel to the local magnetic field. The beams propagate in the direction opposite to the background electrons and cause instabilities. We also obtained the guide-field dependence of the relative electron-beam drift speed, threshold and properties of the resulting streaming instabilities including the strongly non-linear saturation of the self-generated plasma turbulence. This turbulence and its non-linear feedback cause non-adiabatic parallel electron acceleration and EVDFs well beyond the limits of the quasi-linear approximation, producing phase space holes and an isotropizing pitch-angle scattering.Comment: 21 pages, 8 figures. Revised to match with the version published in Physics of Plasmas. An abridged version of the abstract is shown her

    Second constant of motion for two-dimensional positronium in a magnetic field

    Full text link
    Recent numerical work indicates that the classical motion of positronium in a constant magnetic field does not exhibit chaotic behavior if the system is confined to two dimensions. One would therefore expect this system to possess a second constant of the motion in addition to the total energy. In this paper we construct a generalization of the Laplace-Runge-Lenz vector and show that a component of this vector is a constant of the motion.Comment: 4 pages, no figure

    Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I: Macroscopic effects of the electron flows

    Full text link
    In this work, we compare gyrokinetic (GK) and fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (bgb_g). Here we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (βi=0.01\beta_i=0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (bg30b_g\gtrsim 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (bg5b_g\gtrsim 5). Kinetic PIC simulations using guide fields bg30b_g \lesssim 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (βi=1.0\beta_i=1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (bg3b_g\lesssim 3).Comment: 18 pages, 13 figures. Revised to match with the published version in Physics of Plasma

    Molecular gas in low-metallicity starburst galaxies: Scaling relations and the CO-to-H2_2 conversion factor

    Full text link
    We study the molecular content and the star formation efficiency of 21 Blue Compact Dwarfs (BCDs). We present CO(1-0) and (2-1) observations, further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We find the CO luminosity to be correlated with the stellar and HI masses, SFR tracers, the size of the starburst and its metallicity. BCDs appear offset from the Schmidt-Kennicutt (SK) law, showing extremely low (\lesssim0.1 Gyr) H2 and H2+HI depletion timescales. The departure from the SK law is smaller when considering H2+HI rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction and H2 depletion timescale of BCDs is found to be strongly correlated with metallicity. Using this and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z(Z/Z)y\alpha_{CO, Z} \propto (Z/Z_{\odot})^{-y}, with y=1.5(±0.3)y=1.5(\pm 0.3) in qualitative agreement with previous determinations, dust-based measurements, and recent model predictions. Our results suggest that in vigorously star-forming dwarfs the fraction of H2 traced by CO decreases by a factor of about 40 from ZZZ \sim Z_{\odot} to Z0.1ZZ \sim 0.1 Z_{\odot}, leading to a strong underestimation of the H2 mass in metal-poor systems when a Galactic αCO,MW\alpha_{CO, MW} is considered. Adopting αCO,Z\alpha_{CO, Z} we find that departures from the SK law are partially resolved. Our results suggest that starbursting dwarfs have shorter depletion gas timescales and lower molecular fractions compared to normal late-type disc galaxies even accounting for the molecular gas not traced by CO emission in metal-poor environments, raising additional constraints to model predictions (Abridged).Comment: 18 pages, 14 Figures, 4 Tables: Accepted for publication in A&

    Broad Histogram Method for Continuous Systems: the XY-Model

    Full text link
    We propose a way of implementing the Broad Histogram Monte Carlo method to systems with continuous degrees of freedom, and we apply these ideas to investigate the three-dimensional XY-model with periodic boundary conditions. We have found an excellent agreement between our method and traditional Metropolis results for the energy, the magnetization, the specific heat and the magnetic susceptibility on a very large temperature range. For the calculation of these quantities in the temperature range 0.7<T<4.7 our method took less CPU time than the Metropolis simulations for 16 temperature points in that temperature range. Furthermore, it calculates the whole temperature range 1.2<T<4.7 using only 2.2 times more computer effort than the Histogram Monte Carlo method for the range 2.1<T<2.2. Our way of treatment is general, it can also be applied to other systems with continuous degrees of freedom.Comment: 23 pages, 10 Postscript figures, to be published in Int. J. Mod. Phys.
    corecore