19,458 research outputs found
Non-Maxwellian electron distribution functions due to self-generated turbulence in collisionless guide-field reconnection
Non-Maxwellian electron velocity space distribution functions (EVDF) are
useful signatures of plasma conditions and non-local consequences of
collisionless magnetic reconnection. In the past, EVDFs were obtained mainly
for antiparallel reconnection and under the influence of weak guide-fields in
the direction perpendicular to the reconnection plane. EVDFs are, however, not
well known, yet, for oblique (or component-) reconnection in dependence on
stronger guide-magnetic fields and for the exhaust (outflow) region of
reconnection away from the diffusion region. In view of the multi-spacecraft
Magnetospheric Multiscale Mission (MMS), we derived the non-Maxwellian EVDFs of
collisionless magnetic reconnection in dependence on the guide-field strength
from small () to very strong () guide-fields, taking
into account the feedback of the self-generated turbulence. For this sake, we
carried out 2.5D fully-kinetic Particle-in-Cell simulations using the ACRONYM
code. We obtained anisotropic EVDFs and electron beams propagating along the
separatrices as well as in the exhaust region of reconnection. The beams are
anisotropic with a higher temperature in the direction perpendicular rather
than parallel to the local magnetic field. The beams propagate in the direction
opposite to the background electrons and cause instabilities. We also obtained
the guide-field dependence of the relative electron-beam drift speed, threshold
and properties of the resulting streaming instabilities including the strongly
non-linear saturation of the self-generated plasma turbulence. This turbulence
and its non-linear feedback cause non-adiabatic parallel electron acceleration
and EVDFs well beyond the limits of the quasi-linear approximation, producing
phase space holes and an isotropizing pitch-angle scattering.Comment: 21 pages, 8 figures. Revised to match with the version published in
Physics of Plasmas. An abridged version of the abstract is shown her
Complete structure of Z_n Yukawa couplings
We give the complete twisted Yukawa couplings for all the Z_n orbifold
constructions in the most general case, i.e. when orbifold deformations are
considered. This includes a certain number of tasks. Namely, determination of
the allowed couplings, calculation of the explicit dependence of the Yukawa
couplings values on the moduli expectation values (i.e. the parameters
determining the size and shape of the compactified space), etc. The final
expressions are completely explicit, which allows a counting of the DIFFERENT
Yukawa couplings for each orbifold (with and without deformations). This
knowledge is crucial to determine the phenomenological viability of the
different schemes, since it is directly related to the fermion mass hierarchy.
Other facts concerning the phenomenological profile of Z_n orbifolds are also
discussed, e.g. the existence of non--diagonal entries in the fermion mass
matrices, which is related to a non--trivial structure of the
Kobayashi--Maskawa matrix. Finally some theoretical results are given, e.g. the
no--participation of (1,2) moduli in twisted Yukawa couplings. Likewise, (1,1)
moduli associated with fixed tori which are involved in the Yukawa coupling, do
not affect the value of the coupling.Comment: 60 page
- …