29 research outputs found

    Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae

    Get PDF
    Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.Sección Dptal. de Nutrición y Ciencia de los Alimentos (Veterinaria)Fac. de VeterinariaTRUEMinisterio de Ciencia, Innovación y Universidades (MCIU)Universidad Complutense de Madrid and Banco de SantanderUniversidad Complutense de Madridpu

    Draft Genome Sequence of Lactococcus lactis Subsp. cremoris WA2-67: A Promising Nisin-Producing Probiotic Strain Isolated from the Rearing Environment of a Spanish Rainbow Trout (Oncorhynchus mykiss, Walbaum) Farm

    Get PDF
    Probiotics are a viable alternative to traditional chemotherapy agents to control infectious diseases in aquaculture. In this regard, Lactococcus lactis subsp. cremoris WA2-67 has previously demonstrated several probiotic features, such as a strong antimicrobial activity against ichthyopathogens, survival in freshwater, resistance to fish bile and low pH, and hydrophobicity. The aim of this manuscript is an in silico analysis of the whole-genome sequence (WGS) of this strain to gain deeper insights into its probiotic properties and their genetic basis. Genomic DNA was purified, and libraries prepared for Illumina sequencing. After trimming and assembly, resulting contigs were subjected to bioinformatic analyses. The draft genome of L. cremoris WA2-67 consists of 30 contigs (2,573,139 bp), and a total number of 2493 coding DNA sequences (CDSs). Via in silico analysis, the bacteriocinogenic genetic clusters encoding the lantibiotic nisin Z (NisZ) and two new bacteriocins were identified, in addition to several probiotic traits, such as the production of vitamins, amino acids, adhesion/aggregation, and stress resistance factors, as well as the absence of transferable antibiotic resistance determinants and genes encoding detrimental enzymatic activities and virulence factors. These results unveil diverse beneficial properties that support the use of L. cremoris WA2-67 as a probiotic for aquaculture

    Nisin S, a Novel Nisin Variant Produced by <i>Ligilactobacillus salivarius</i> P1CEA3

    No full text
    Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential

    Generation and characterisation of Porphyromonas gingivalis mutant lacking peptidylarginine deiminase activity

    No full text
    Porphyromonas gingivalis peptidylarginine deiminase (PPAD) is the focus of several studies due to its ability to citrullinate in vitro human proteins, which have been linked to the aetiopathogenesis of rheumatoid arthritis (RA). The aim of this work was the generation by homologous recombination and characterisation of a P. gingivalis W50 mutant lacking pad gene (PG1424) to study the role of PPAD in RA. To confirm the absence of PPAD activity in P. gingivalis PG1424, cells were incubated with arginine-containing substrates and citrullination of L-arginine measured using a colorimetric assay and thin-layer chromatography. Furthermore, arginine and lysine protease (gingipain) activities were assessed and immunoblotting was performed using monoclonal antibody 1B5 (mAb1B5) and a commercial anti-modified citrulline antibody (AMC) to detect differences in virulence factor expression. The deletion of pad gene in P. gingivalis PG1424 completely abolished the ability to autocitrullinate P. gingivalis proteins in the mutant strain and also the citrullination of used substrates but not free L-arginine. Moreover, the wild-type and mutant strains had similar total gingipain activities and reactivity with mAb1B5. In conclusion, this work has produced a well-characterised PPAD-deleted P. gingivalis strain, which can be used to help determine the role of citrullination by this microorganism in RA

    Safety assessment and molecular genetic profiling by pulsed-field gel electrophoresis (PFGE) and PCR-based techniques of Enterococcus faecium strains of food origin

    No full text
    Enterococcus faecium is authorized as animal probiotic in the European Union, but this species has emerged as an important cause of nosocomial infections in humans. We investigated the safety of 14 potential probiotic E. faecium strains with antimicrobial activity, previously isolated from food, following the guidance proposed by EFSA. All the enterococci were susceptible to ampicillin, and none of them harbored the genes encoding the enterococcal surface protein (esp), putative glycosyl hydrolase (hylEfm), and insertion sequence IS16. The genetic relatedness of these enterococci was determined by pulsed-field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD), enterobacterial repetitive intergenic consensus (ERIC-PCR), and restriction analysis of amplified 16S rDNA (ARDRA). PFGE analysis of SmaI patterns evidenced four subgroups, whereas RAPD and ERIC-PCR analysis gave nine and eight different subgroups, respectively. ERIC-PCR yielded the highest diversity, followed by RAPD and PFGE, while ARDRA achieved the lowest diversity. In conclusion, we demonstrated the absence of well-known enterococcal virulence markers in a collection of E. faecium strains from food, which renders them safe to be used in the food industry or as probiotics in animal production, and that ERIC-PCR is a reliable tool to be used for molecular genetic profiling of potential probiotic enterococci.Ministerio de Economía y CompetitividadComunidad de MadridEuropean Social FundDepto. de Nutrición y Ciencia de los AlimentosFac. de VeterinariaFALSEpu

    Production of Pumilarin and a Novel Circular Bacteriocin, Altitudin A, by <i>Bacillus altitudinis</i> ECC22, a Soil-Derived Bacteriocin Producer

    No full text
    The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively
    corecore