13,100 research outputs found

    Nonleptonic two-body B-decays including axial-vector mesons in the final state

    Full text link
    We present a systematic study of exclusive charmless nonleptonic two-body B decays including axial-vector mesons in the final state. We calculate branching ratios of B\to PA, VA and AA decays, where A, V and P denote an axial-vector, a vector and a pseudoscalar meson, respectively. We assume naive factorization hypothesis and use the improved version of the nonrelativistic ISGW quark model for form factors in B\to A transitions. We include contributions that arise from the effective \Delta B=1 weak Hamiltonian H_{eff}. The respective factorized amplitude of these decays are explicitly showed and their penguin contributions are classified. We find that decays B^-to a_1^0\pi^-,\barB^0\to a_1^{\pm}\pi^{\mp}, B^-\to a_1^-\bar K^0, \bar B^0\to a_1^+K^-, \bar B^0\to f_1\bar K^0, B^-\to f_1K^-, B^-\to K_1^-(1400)\etap, B^-\to b_1^-\bar K^{0}, and \bar B^0\to b_1^+\pi^-(K^-) have branching ratios of the order of 10^{-5}. We also study the dependence of branching ratios for B \to K_1P(V,A) decays (K_1=K_1(1270),K_1(1400)) with respect to the mixing angle between K_A and K_B.Comment: 28 pages, 2 tables and one reference added, notation changed in appendices, some numerical results and abstract correcte

    Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    Full text link
    Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We found that, as expected, solid N2 has the lowest VUV-absorption cross section, which about three orders of magnitude lower than that of other species such as O2, which is also homonuclear. Methane (CH4) ice presents a high absorption near Ly-alpha (121.6 nm) and does not absorb below 148 nm. Estimating the ice absorption cross sections is essential for models of ice photoprocessing and allows estimating the ice photodesorption rates as the number of photodesorbed molecules per absorbed photon in the ice.Comment: 9 pages, 6 figures, 7 table

    First clear evidence of quantum chaos in the bound states of an atomic nucleus

    Get PDF
    We study the spectral fluctuations of the 208^{208}Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of 6.206.20 MeV recently identified at the Maier-Leibnitz-Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of Random Matrix Theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter ω\omega, which takes the value ω=0\omega=0 for regular systems and ω≃1\omega \simeq 1 for chaotic systems. We obtain ω=0.85±0.02\omega=0.85 \pm 0.02 which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in 208^{208}Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition our results show that chaotic and non-chaotic nuclear states coexist in the same energy region of the spectrum.Comment: 9 pages, 1 figur

    Non perturbative renormalization group approach to surface growth

    Full text link
    We present a recently introduced real space renormalization group (RG) approach to the study of surface growth. The method permits us to obtain the properties of the KPZ strong coupling fixed point, which is not accessible to standard perturbative field theory approaches. Using this method, and with the aid of small Monte Carlo calculations for systems of linear size 2 and 4, we calculate the roughness exponent in dimensions up to d=8. The results agree with the known numerical values with good accuracy. Furthermore, the method permits us to predict the absence of an upper critical dimension for KPZ contrarily to recent claims. The RG scheme is applied to other growth models in different universality classes and reproduces very well all the observed phenomenology and numerical results. Intended as a sort of finite size scaling method, the new scheme may simplify in some cases from a computational point of view the calculation of scaling exponents of growth processes.Comment: Invited talk presented at the CCP1998 (Granada

    Investigation of HNCO isomers formation in ice mantles by UV and thermal processing: an experimental approach

    Full text link
    Current gas phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting a formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogues containing H2_2O, NH3_3, CO, HCN, CH3_3OH, CH4_4, and N2_2 followed by warm-up, under astrophysically relevant conditions. Only the H2_2O:NH3_3:CO and H2_2O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H2_2O:NH3_3:CO and H2_2O:HCN ices was simulated using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer (QMS) detected the desorption of the molecules in the gas phase. UV-photoprocessing of H2_2O:NH3_3:CO/H2_2O:HCN ices lead to the formation of OCN−^- as main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV-photoprocessing of realistic simulated ice mantles, might explain the observed abundances of these species in PDRs, hot cores, and dark clouds

    Manufacturing time operators: covariance, selection criteria, and examples

    Full text link
    We provide the most general forms of covariant and normalized time operators and their probability densities, with applications to quantum clocks, the time of arrival, and Lyapunov quantum operators. Examples are discussed of the profusion of possible operators and their physical meaning. Criteria to define unique, optimal operators for specific cases are given

    On the nonlinear stability of mKdV breathers

    Full text link
    A mathematical proof for the stability of mKdV breathers is announced. This proof involves the existence of a nonlinear equation satisfied by all breather profiles, and a new Lyapunov functional which controls the dynamics of small perturbations and instability modes. In order to construct such a functional, we work in a subspace of the energy one. However, our proof introduces new ideas in order to attack the corresponding stability problem in the energy space. Some remarks about the sine-Gordon case are also considered.Comment: 7 p
    • …
    corecore