12 research outputs found

    Function of TRP channels in monocytes/macrophages

    Get PDF
    The transient receptor potential channel (TRP channel) family is a kind of non- specific cation channel widely distributed in various tissues and organs of the human body, including the respiratory system, cardiovascular system, immune system, etc. It has been reported that various TRP channels are expressed in mammalian macrophages. TRP channels may be involved in various signaling pathways in the development of various systemic diseases through changes in intracellular concentrations of cations such as calcium and magnesium. These TRP channels may also intermingle with macrophage activation signals to jointly regulate the occurrence and development of diseases. Here, we summarize recent findings on the expression and function of TRP channels in macrophages and discuss their role as modulators of macrophage activation and function. As research on TRP channels in health and disease progresses, it is anticipated that positive or negative modulators of TRP channels for treating specific diseases may be promising therapeutic options for the prevention and/or treatment of disease

    Improved Three-Phase Micro-Inverter Using Dynamic Dead Time Optimization And Phase-Skipping Control Techniques

    No full text
    This paper introduces two efficiency improvement techniques for a grid-tied micro-inverter with current mode control zero voltage switching (ZVS) output stages. The first technique is dynamic dead time optimization wherein PWM dead times are dynamically adjusted as a function of load current. The second method is advanced phase-skipping control which distributes power on individual phases depending on the available input power from PV source. Neither of the techniques require any additional components and both can be easily implemented in the digital controller firmware. The two techniques were designed and implemented in a 400W three-phase micro-inverter prototype and the experimental results confirm practical implementation of these techniques and demonstrate that significant efficiency improvement can be achieved

    Effects of <i>Cysticercus cellulosae</i> Excretory–Secretory Antigens on the TGF-β Signaling Pathway and Th17 Cell Differentiation in Piglets, a Proteomic Analysis

    No full text
    Excretory–secretory antigens (ESAs) of Cysticercus cellulosae can directly regulate the proliferation and differentiation of host T regulatory (Treg) cells, thus inhibiting host immune responses. However, previous studies have only focused on this phenomenon, and the molecular mechanisms behind the ways in which C. cellulosae ESAs regulate the differentiation of host Treg/Th17 cells have not been reported. We collected CD3+ T cells stimulated by C. cellulosae ESAs through magnetic bead sorting and used label-free quantification (LFQ) proteomics techniques to analyze the signaling pathways of C. cellulosae ESAs regulating Treg/Th17 cell differentiation. Through gene set enrichment analysis (GSEA), we found that C. cellulosae ESAs could upregulate the TGF-β signaling pathway and downregulate Th17 cell differentiation in piglet T cells. Interestingly, we also found that the IL-2/STAT5 signaling pathway also affects the downregulation of Th17 cell differentiation. C. cellulosae ESAs activate the TGF-β signaling pathway and the IL-2/STAT5 signaling pathway in host T cells to further regulate the differentiation of Treg/Th17 cells in order to evade host immune attack. This study lays the foundation for the subsequent verification of these pathways, and further clarifies the molecular mechanism of C. cellulosae-mediated immune evasion

    Data underlying the publication: “The effects of Cysticercus cellulosae excretory-secretory antigens on TGF-β signaling pathway and Th17 cells differentiation in piglets T cells by proteomics”

    No full text
    This dataset contains data collected in in vitro experiments on pigs conducted at Zunyi Medical University as part of Wei He's (first author of the manuscript) master's thesis project. in this study, we used label-free quantification (LFQ) proteomics techniques to further explore the molecular mechanisms by which C. cellulosae ESAs induce the differentiation of piglet Treg/Th17 cells through the TGF-β signaling pathway and Th17 cells differentiation. This dataset contains raw data, as well as data analysis and the production of statistical graphs through Flowjo, SPSS and Graphad Prism.</p

    CD36 deficiency ameliorates drug-induced acute liver injury in mice

    No full text
    Abstract Background Acetaminophen (APAP) overdose causes hepatotoxicity and even acute liver failure. Recent studies indicate that sterile inflammation and innate immune cells may play important roles in damage-induced hepatocytes regeneration and liver repair. The scavenger receptor CD36 has its crucial functions in sterile inflammation. However, the roles of CD36 in APAP induced acute liver injury remain unclear and warrant further investigation. Methods WT C57BL/6 J and CD36−/− mice were intraperitoneally injected with APAP (300 mg/kg) after fasting for 16 h. Liver injury was evaluated by serum alanine aminotransferase (ALT) level and liver tissue hematoxylin and eosin (H&E) staining. Liver inflammatory factor expression was determined by real-time polymerase chain reaction (PCR). The protein adducts forming from the metabolite of APAP and the metabolism enzyme cytochrome P450 2E1 (CYP2E1) levels were measured by Western blot. Liver infiltrating macrophages and neutrophils were characterized by flow cytometry. RNA sequencing and Western blot were used to evaluate the effect of damage-associated molecular patterns (DAMP) molecule high mobility group B1 (HMGB1) on WT and CD36−/− macrophages. Moreover, PP2, a Src kinase inhibitor, blocking CD36 signaling, was applied in APAP model. Results The expression of CD36 was increased in the liver of mice after APAP treatment. Compared with WT mice, APAP treated CD36−/− mice show less liver injury. There was no significant difference in APAP protein adducts and CYP2E1 expression between these two strains. However, reduced pro-inflammatory factor mRNA expression and serum IL-1β level were observed in APAP treated CD36−/− mice as well as infiltrating macrophages and neutrophils. Moreover, CD36 deficiency impaired the activation of c-Jun N-terminal kinase (JNK) caused by APAP. Interestingly, the lack of CD36 reduced the activation of extracellular regulated protein kinases (Erk) and v-akt murine thymoma viral oncogene homolog (Akt) induced by HMGB1. RNA transcription sequencing data indicated that HMGB1 has a different effect on WT and CD36−/− macrophages. Furthermore, treatment with PP2 attenuated APAP induced mouse liver injury. Conclusion Our data demonstrated that CD36 deficiency ameliorated APAP-induced acute liver injury and inflammatory responses by decreasing JNK activation. CD36 might serve as a new target to reduce acute liver injury

    Chitinase 3-like 1-CD44 interaction promotes metastasis and epithelial-to-mesenchymal transition through β-catenin/Erk/Akt signaling in gastric cancer

    No full text
    Abstract Background Enzymatically inactive chitinase-like protein CHI3L1 drives inflammatory response and promotes tumor progression. However, its role in gastric cancer (GC) tumorigenesis and metastasis has not yet been fully elucidated. We determined the significance of CHI3L1 expression in patients with GC. We also explored an as-yet unknown receptor of CHI3L1 and investigated the involved signaling in GC metastasis. Methods CHI3L1 expression was evaluated by immunoblotting, tissue microarray-based immunohistochemistry analysis (n = 100), and enzyme linked immunosorbent assay (ELISA) (n = 150). The interactions between CD44 and CHI3L1 or Interleukin-13 receptor alpha 2 (IL-13Rα2) were analyzed by co-immunoprecipitation, immunofluorescence co-localization assay, ELISA, and bio-layer interferometry. The roles of CHI3L1/CD44 axis in GC metastasis were investigated in GC cell lines and experimental animal model by gain and loss of function. Results CHI3L1 upregulation occurred during GC development, and positively correlated with GC invasion depth, lymph node status, and tumor staging. Mechanically, CHI3L1 binding to CD44 activated Erk and Akt, along with β-catenin signaling by phosphorylating β-catenin at Ser552 and Ser675. CD44 also interacted with IL-13Rα2 to form a complex. Notably, CD44v3 peptide and protein, but not CD44v6 peptide or CD44s protein, bound to both CHI3L1 and IL-13Rα2. Our in vivo and in vitro data further demonstrated that CHI3L1 promoted GC cell proliferation, migration, and metastasis. Conclusions CHI3L1 binding to CD44v3 activates Erk, Akt, and β-catenin signaling, therefore enhances GC metastasis. CHI3L1 expression is a novel biomarker for the prognosis of GC, and these findings have thus identified CHI3L1/CD44 axis as a vital pathway and potential therapeutic target in GC
    corecore