16 research outputs found

    Waste-to-materials : the longterm option

    No full text
    Managing solid waste is one of the biggest challenges in urban areas around the world. Technologically advanced economies generate vast amounts of organic waste materials, many of which are disposed to landfills. In the future, efficient use of carbon containing waste and all other waste materials has to be increased to reduce the need for virgin raw materials acquisition, including biomass, and reduce carbon being emitted to the atmosphere therefore mitigating climate change. At end-of-life, carbon-containing waste should not only be treated for energy recovery (e.g. via incineration) but technologies should be applied to recycle the carbon for use as material feedstocks. Thermochemical and biochemical conversion technologies offer the option to utilize organic waste for the production of chemical feedstock and subsequent polymers. The routes towards synthetic materials allow a more closed cycle of materials and can help to reduce dependence on either fossil or biobased raw materials. This chapter summarizes carbon-recycling routes available and investigates how in the long-term they could be applied to enhance waste management in both industrial countries as well as developing and emerging economies. We conclude with a case study looking at the system-wide global warming potential (GWP) and cumulative energy demand (CED) of producing high-density polyethylene (HDPE) from organic waste feedstock via gasification followed by Fischer–Tropsch synthesis (FTS). Results of the analysis indicate that the use of organic waste feedstock is beneficial if greenhouse gas (GHG) emissions associated with landfill diversion are considered

    Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018

    No full text
    International Journal Environmental Research and Public Health, 2019; 16(2816)Approximately 1500 people die annually due to rabies in the United Republic of Tanzania. Moshi, in the Kilimanjaro Region, reported sporadic cases of human rabies between 2017 and 2018. In response and following a One Health approach, we implemented surveillance, monitoring, as well as a mass vaccinations of domestic pets concurrently in >150 villages, achieving a 74.5% vaccination coverage (n = 29, 885 dogs and cats) by September 2018. As of April 2019, no single human or animal case has been recorded. We have observed a disparity between awareness and knowledge levels of community members on rabies epidemiology. Self-adherence to protective rabies vaccination in animals was poor due to the challenges of costs and distances to vaccination centers, among others. Incidence of dog bites was high and only a fraction (65%) of dog bite victims (humans) received post-exposure prophylaxis. A high proportion of unvaccinated dogs and cats and the relative intense interactions with wild dog species at interfaces were the risk factors for seropositivity to rabies virus infection in dogs. A percentage of the previously vaccinated dogs remained unimmunized and some unvaccinated dogs were seropositive. Evidence of community engagement and multi-coordinated implementation of One Health in Moshi serves as an example of best practice in tackling zoonotic diseases using multi-level government e orts. The district-level establishment of the One Health rapid response team (OHRRT), implementation of a carefully structured routine vaccination campaign, improved health education, and the implementation of barriers between domestic animals and wildlife at the interfaces are necessary to reduce the burden of rabies in Moshi and communities with similar profiles

    Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018

    No full text
    International Journal Environmental Research and Public Health, 2019; 16(2816)Approximately 1500 people die annually due to rabies in the United Republic of Tanzania. Moshi, in the Kilimanjaro Region, reported sporadic cases of human rabies between 2017 and 2018. In response and following a One Health approach, we implemented surveillance, monitoring, as well as a mass vaccinations of domestic pets concurrently in >150 villages, achieving a 74.5% vaccination coverage (n = 29, 885 dogs and cats) by September 2018. As of April 2019, no single human or animal case has been recorded. We have observed a disparity between awareness and knowledge levels of community members on rabies epidemiology. Self-adherence to protective rabies vaccination in animals was poor due to the challenges of costs and distances to vaccination centers, among others. Incidence of dog bites was high and only a fraction (65%) of dog bite victims (humans) received post-exposure prophylaxis. A high proportion of unvaccinated dogs and cats and the relative intense interactions with wild dog species at interfaces were the risk factors for seropositivity to rabies virus infection in dogs. A percentage of the previously vaccinated dogs remained unimmunized and some unvaccinated dogs were seropositive. Evidence of community engagement and multi-coordinated implementation of One Health in Moshi serves as an example of best practice in tackling zoonotic diseases using multi-level government e orts. The district-level establishment of the One Health rapid response team (OHRRT), implementation of a carefully structured routine vaccination campaign, improved health education, and the implementation of barriers between domestic animals and wildlife at the interfaces are necessary to reduce the burden of rabies in Moshi and communities with similar profiles

    Pan-tropical prediction of forest structure from the largest trees

    No full text
    Aim Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan-tropical model to predict plot-level forest structure properties and biomass from only the largest trees. Location Time period Pan-tropical. Early 21st century. Major taxa studied Methods Woody plants. Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees. Results Main conclusions Measuring the largest trees in tropical forests enables unbiased predictions of plot- and site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium-sized trees (50-70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate-diameter classes relative to other continents. Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change
    corecore