3 research outputs found

    Efficacy and safety of intravenous ferric carboxymaltose compared with oral iron for the treatment of iron deficiency anaemia in women after childbirth in Tanzania: a parallelgroup, open-label, randomised controlled phase 3 trial

    Get PDF
    Background: Iron deficiency anaemia is of major concern in low-income settings, especially for women of childbearing age. Oral iron substitution efficacy is limited by poor compliance and iron depletion severity. We aimed to assess the efficacy and safety of intravenous ferric carboxymaltose versus oral iron substitution following childbirth in women with iron deficiency anaemia in Tanzania. Methods: This parallel-group, open-label, randomised controlled phase 3 trial was done at Bagamoyo District Hospital and Mwananyamala Hospital, Tanzania. Eligible participants were close to delivery and had iron deficiency anaemia defined as a haemoglobin concentration of less than 110 g/L and a ferritin concentration of less than 50 μg/L measured within 14 days before childbirth. Participants were randomly assigned 1:1 to receive intravenous ferric carboxymaltose or oral iron, stratified by haemoglobin concentration and site. Intravenous ferric carboxymaltose was administered at a dose determined by the haemoglobin concentration and bodyweight (bodyweight 35 kg to <70 kg and haemoglobin ≥100 g/L: 1000 mg in one dose; bodyweight 35 kg to <70 kg and haemoglobin <100 g/L, or bodyweight ≥70 kg and haemoglobin ≥100 g/L: 1500 mg in two doses at least 7 days apart; bodyweight ≥70 kg and haemoglobin 115 g/L) at 6 weeks. Follow-up visits were at 6 weeks, and 3, 6, and 12 months. Analyses were done in the modified intention-totreat population of participants who had a 6-week haemoglobin concentration result, using logistic and linear regression models for binary and continuous outcomes, adjusted for baseline haemoglobin concentration and site. This trial is registered with ClinicalTrials.gov, NCT02541708. Findings: Between Oct 8, 2015, and March 14, 2017, 533 individuals were screened and 230 were enrolled and randomly assigned to a study group (114 to intravenous iron, 116 to oral iron). At 6 weeks, 94 (82%) participants in the intravenous iron group and 92 (79%) in the oral iron group were assessed for the primary outcome. 75 (80%) participants in the intravenous iron group and 47 (51%) in the oral iron group had normalised haemoglobin (odds ratio 4·65, 95% CI 2·33-9·27). There were two mild to moderate infusion-related adverse events; and five serious adverse events (three in the intravenous iron group, two in the oral iron group), unrelated to the study medication. Interpretation: Intravenous iron substitution with ferric carboxymaltose was safe and yielded a better haemoglobin response than oral iron. To our knowledge, this is the first study to provide evidence of the benefits and safety of intravenous iron substitution in a low-income setting

    Superior antibody immunogenicity of a viral-vectored RH5 blood-stage malaria vaccine in Tanzanian infants as compared to adults

    No full text
    Background: RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. Methods: A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18–35 years), young children (1–6 years), and infants (6–11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. Findings: Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. Conclusions: The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. Funding: Medical Research Council, London, UK

    Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial

    Get PDF
    Background: A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. Methods: We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18–45 years) and children (aged 5–17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 μg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 μg RH5.1 at 0 and 1 month and 10 μg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 μg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 μg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 μg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. Findings: Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per μg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 μg/mL (95% CI 13·4–15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 μg/mL [IQR 511–1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81–94]). Interpretation: The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5–17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. Funding: The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust
    corecore