6 research outputs found
Recommended from our members
Recommendations on the diagnosis, treatment and monitoring of hypogonadism in men
Hypogonadism or Testosterone Deficiency (TD) in adult men as defined by low levels of serum testosterone accompanied by characteristic symptoms and/or signs as detailed further on can be found in long-recognized clinical entities such as Klinefelter syndrome, Kallmann syndrome, pituitary or testicular disorders, as well as in men with idiopathic, metabolic or iatrogenic conditions that result in testosterone deficiency. These recommendations do not encompass the full range of pathologies leading to hypogonadism (testosterone deficiency), but instead focus on the clinical spectrum of hypogonadism related to metabolic and idiopathic disorders that contribute to the majority of cases that occur in adult men
Testosterone therapy reduces insulin resistance in men with adultâonset testosterone deficiency and metabolic syndrome. Results from the Moscow Study, a randomized controlled trial with an openâlabel phase
AimsTo describe changes in homeostasis model assessment of insulin resistance index (HOMA-IR) following testosterone therapy in men with hypogonadism and metabolic syndrome (MetS).Materials and MethodsA randomized, placebo-controlled, double-blind randomized controlled trial (RCT) comprising 184 men with MetS and hypogonadism (testosterone undecanoate [TU]: 113 men, placebo: 71 men) was conducted. This was followed by an open-label phase in which all men were given TU. We focused on men who were not receiving antiglycaemic agents (TU: 81 men; placebo: 54 men) as these could affect HOMA-IR. Inter-group comparison of HOMA-IR was restricted to the RCT (30âweeks), whilst intra-group comparison was carried out on men provided TU during the RCT and open-label phases (study cohort) and men given placebo during the RCT and then switched to TU during the open-label phase (confirmatory cohort). Regression analysis was performed to identify factors associated with change in HOMA-IR (âHOMA-IR).ResultsThe median HOMA-IR was significantly reduced at almost every time point (after 18âweeks) compared to baseline in men receiving TU in both the study and confirmatory cohorts. There was a significant decrease in median values of fasting glucose (30âweeks: â2.1%; 138âweeks: â4.9%) and insulin (30âweeks: â10.5%; 138âweeks: â35.5%) after TU treatment. Placebo was not associated with significant âHOMA-IR. The only consistent predictor of HOMA-IR decrease following TU treatment was baseline HOMA-IR (r2ââ„â0.64).ConclusionsBaseline HOMA-IR predicted ÎHOMA-IR, with a greater percentage change in insulin than in fasting glucose. In men with MetS/type 2 diabetes (T2DM) not on antiglycaemic therapy, improvements in HOMA-IR may be greater than suggested by change in fasting glucose. Our results suggest that hypogonadism screening be included in the management of men with MetS/T2DM
Fundamental Concepts Regarding Testosterone Deficiency and Treatment: International Expert Consensus Resolutions.
To address widespread concerns regarding the medical condition of testosterone (T) deficiency (TD) (male hypogonadism) and its treatment with T therapy, an international expert consensus conference was convened in Prague, Czech Republic, on October 1, 2015. Experts included a broad range of medical specialties including urology, endocrinology, diabetology, internal medicine, and basic science research. A representative from the European Medicines Agency participated in a nonvoting capacity. Nine resolutions were debated, with unanimous approval: (1) TD is a well-established, clinically significant medical condition that negatively affects male sexuality, reproduction, general health, and quality of life; (2) symptoms and signs of TD occur as a result of low levels of T and may benefit from treatment regardless of whether there is an identified underlying etiology; (3) TD is a global public health concern; (4) T therapy for men with TD is effective, rational, and evidence based; (5) there is no T concentration threshold that reliably distinguishes those who will respond to treatment from those who will not; (6) there is no scientific basis for any age-specific recommendations against the use of T therapy in men; (7) the evidence does not support increased risks of cardiovascular events with T therapy; (8) the evidence does not support increased risk of prostate cancer with T therapy; and (9) the evidence supports a major research initiative to explore possible benefits of T therapy for cardiometabolic disease, including diabetes. These resolutions may be considered points of agreement by a broad range of experts based on the best available scientific evidence