54 research outputs found

    New flexible silicone-based EEG dry sensor material compositions exhibiting improvements in lifespan, conductivity, and reliability

    Full text link
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors’ construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications

    Translating microarray data for diagnostic testing in childhood leukaemia

    Get PDF
    BACKGROUND: Recent findings from microarray studies have raised the prospect of a standardized diagnostic gene expression platform to enhance accurate diagnosis and risk stratification in paediatric acute lymphoblastic leukaemia (ALL). However, the robustness as well as the format for such a diagnostic test remains to be determined. As a step towards clinical application of these findings, we have systematically analyzed a published ALL microarray data set using Robust Multi-array Analysis (RMA) and Random Forest (RF). METHODS: We examined published microarray data from 104 ALL patients specimens, that represent six different subgroups defined by cytogenetic features and immunophenotypes. Using the decision-tree based supervised learning algorithm Random Forest (RF), we determined a small set of genes for optimal subgroup distinction and subsequently validated their predictive power in an independent patient cohort. RESULTS: We achieved very high overall ALL subgroup prediction accuracies of about 98%, and were able to verify the robustness of these genes in an independent panel of 68 specimens obtained from a different institution and processed in a different laboratory. Our study established that the selection of discriminating genes is strongly dependent on the analysis method. This may have profound implications for clinical use, particularly when the classifier is reduced to a small set of genes. We have demonstrated that as few as 26 genes yield accurate class prediction and importantly, almost 70% of these genes have not been previously identified as essential for class distinction of the six ALL subgroups. CONCLUSION: Our finding supports the feasibility of qRT-PCR technology for standardized diagnostic testing in paediatric ALL and should, in conjunction with conventional cytogenetics lead to a more accurate classification of the disease. In addition, we have demonstrated that microarray findings from one study can be confirmed in an independent study, using an entirely independent patient cohort and with microarray experiments being performed by a different research team

    A Meta-Analysis of the Willingness to Pay for Reductions in Pesticide Risk Exposure

    Full text link

    Obesity and colorectal cancer: molecular features of adipose tissue

    Full text link

    Homogeneous, coaxial liquid crystal domain growth from carbon nanotube seeds

    No full text
    We have developed a general method for aligning anisotropic materials by using carbon nanotubes to influence order in the surrounding material. Specifically, we have shown that carbon nanotubes seed the formation of oriented domains in a liquid crystalline polymer (LCP). Using polarized light microscopy, we have observed that the molecular alignment in these large (10-100 ??m long) domains is homogeneous and controlled by the direction of the nanotube nucleus. The kinetic nature of this nucleation process was verified by differential scanning calorimetry. The coupling of preferential nucleation and controlled seed orientation may allow bulk LCP materials to be aligned by simply preorganizing a small number of dispersed nanotube seeds. We expect that this work will aid in the development and application of macroscopically ordered nanostructured composite materials.close394
    corecore