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Abstract The probability and phase/current facets of electronic states generate the
classical and nonclassical information terms, respectively. The current-related sup-
plements of the classical information measures and continuity equations for these
degrees-of-freedom are summarized. The continuity of the resultant quantum entropy
is also explored. This thermodynamic-like description is applied to discuss the tem-
poral aspect of the promolecule-to-molecule transition in H+

2 . The Wiberg-type bond
multiplicity concept is extended to cover the degenerate electronic states. They gen-
erally exhibit finite spatial phases and hence nonvanishing electronic currents, and
thus also nonzero nonclassical contributions to the resultant content of the state
entropy/information. Illustrative example of the excited configurations in the π -
electron ring of benzene is investigated using the complex framework of the (ground-
state equivalent) molecular orbitals in Hückel approximation. To validate these gen-
eralized concepts, correlations between the π -bond orders/multiplicities and orbital
excitation energies are explored.

Keywords Bond multiplicities · Continuity equantions · Electronic phases/currents ·
Excited configurations in benzene · Nonclassical entropy/information · Promolecule-
to-molecule transition

1 Introduction

The overall entropy/information content of quantum electronic states is one of the
crucial problems of the molecular electronic structure. In the past the classical
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(probability-based) Information Theory (IT) [1–8] has been successfully applied to
explore molecular electron distributions and extract patterns of the system chemi-
cal bonds, e.g., [9–18]. It has been recently argued, however, that both the electron
probability distribution, determined by the wave-function modulus, and the particle
current, related to the gradient of the wave-function phase, ultimately contribute to the
resultant information content of molecular states [9,10,19–31]. The particle density
reveals only the classical part of the information content, while the wave-function
phase or the probability current generate its nonclassical complement in the associ-
ated resultant information descriptor. The extremum principles of these generalized
information measures determine the quantum equilibria in molecules and their frag-
ments, described by the phase-modified wave functions. The phase/current extension
of the ordinary (probability) communication systems has also been introduced [26].

The phenomenological description of molecular equilibria has been proposed,
which resembles that developed in ordinary irreversible thermodynamics [32]. These
two fundamental degrees of freedom of general, complex molecular states, e.g., the
degenerate electronic configurations in molecular orbital (MO) theories, also affect
the bond-order and/or chemical multiplicity concepts [33–44]. The latter have been
originally formulated for real electronic states approximated by the wave functions of
self-consistent field (SCF) theories, from typical SCF LCAO MO calculations using
linear combinations (LC) of (real) atomic basis functions, e.g., the atomic orbitals (AO)
themselves. These descriptors have been demonstrated to closely follow the intuitive
expectations and constitute valuable tools for interpreting molecular wave functions
in chemical terms.

We begin the present analysis with a brief summary of the probability and phase
degrees-of-freedom in molecular states and their information contributions in the com-
plex electronic states. The combined treatment of the density and phase/current facets
of electronic states in a “thermodynamic”-like fashion is advocated. The relevant con-
tinuity equations are derived, establishing the current and source concepts of the state
phase and its resultant entropy. This phenomenological description is then applied
to investigate the relaxation time of the promolecule→molecule reorganization in a
prototype “half”-bond system of H+

2 . The bond multiplicity concept is extended into
degenerate electronic states, which can generate the complex Charge and Bond-Order
(CBO) matrix of the SCF LCAO MO theory, i.e., the one-electron density matrix in
AO representation. These generalized concepts are used to probe the π -bond pattern
in selected excited configurations of the carbon ring in benzene, using the familiar
approximation of the Hückel MO theory. We shall also examine how these new con-
cepts correlate with the configuration orbital excitation energy.

Throughout the article the following tensor notation is used: A denotes a scalar,
A stands for the row- or column-vector, and A represents a square or rectangular
matrix. The logarithm of the Shannon-type information measure is taken to an arbitrary
but fixed base. In keeping with the custom in works on IT the logarithm taken to
base 2, log = log2, corresponds to the information measured in bits (binary digits),
while selecting log = ln expresses the amount of information in nats (natural units):
1 nat = 1.44 bits.
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2 Probability and phase/current degrees-of-freedom of electronic states

For reasons of simplicity, let us first consider a single electron (N = 1) in state
|ϕ〉 ≡ |ψ(0)〉 at time t = 0, described by the wave function

ϕ(r) = 〈r|ϕ〉 = R(r) exp[iφ(r)] ≡ ψ(r, t = 0), (1)

where R(r) and φ(r) stand for its modulus and phase parts, respectively. In what
follows we adopt the positive-phase convention: φ(r) = |φ(r)| ≥ 0. The particle
spatial distribution is then described by the electron density ρ(r) = N p(r) or its
probability (shape) factor p(r) generated by the square of its classical amplitude R(r):

p(r) = ϕ(r)ϕ∗(r) = R(r)2. (2)

In the molecular scenario one envisages this single electron moving in the external
potential v(r) = −∑

α Zα/|r − Rα| due to the “frozen” nuclei (Born–Oppenheimer
approximation). Its dynamics is described by the Hamiltonian

Ĥ(r) = −(h̄2/2m)�+ v(r) = T̂(r)+ v(r), (3)

where T̂(r) = p̂2
(r)/2m = −(h̄2/2m)� denotes the kinetic energy operator with the

momentum operator p̂(r) = −ih̄∇.
The probability density of Eq. (2) and the gradient of the state phase φ(r) together

determine the associated current density,

j(r) = 〈ϕ|ĵ(r)|ϕ〉 = h̄

2mi

[
ϕ∗(r)∇ϕ(r)− ϕ(r)∇ϕ∗(r)

] = h̄

m
Im[ϕ∗(r)∇ϕ(r)]

= h̄

m
p(r)∇φ(r) ≡ p(r)V (r) ≡ j p(r), (4a)

the expectation value of the current operator

ĵ(r) = (2m)−1[p̂(r1)δ(r1 − r)+ δ(r1 − r)p̂(r1)]. (4b)

The current-per-particle distribution,

j(r)/p(r) = h̄

m
∇φ(r) ≡ V (r), (5)

measures the velocity field V(r) of this probability “fluid”, which is seen to be deter-
mined solely by the gradient of the state phase.

The wave-function modulus R, the classical amplitude of the particle probability-
density function p, R = (p)1/2, and the state phase φ, or its gradient ∇φ determining
the current density j, thus constitute two fundamental degrees-of-freedom in the quan-
tum treatment of the electronic states of this one-electron system: ψ ⇔ (R, φ) ⇔
(p, j). The eigensolutions of Ĥ(r) represent the stationary electronic states {ϕi (r)}:
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Ĥ(r)ϕi (r) = Eiϕi (r), i = 0, 1, . . . , (6)

which correspond to the sharply specified electronic energies {Ei }, with the lowest
(i = 0) eigenvalue marking the energy of the system ground state and the time-
independent probability distribution, pi (r) = |ϕi (r, t)|2 = |ϕi (r)|2, which identifies
the system “weak”-stationary character. Typicallyϕi (r, t) also exhibits the purely time-
dependent phase φi (t), i.e., the exactly vanishing spatial-phase component φi (r) = 0,
in the particle full (complex) wave function

ψi (r, t) = 〈r|ψi (t)〉 = Ri (r) exp{i[φi (r)+ φi (t)]
= ϕi (r) exp [−i (Ei/h̄) t] ≡ Ri (r) exp[−iωi t], (7)

and hence both the stationary probability distribution, pi (r, t) = pi (r) = |ϕi (r)|2 =
Ri (r)2, and the vanishing current density j i (r) = (h̄/m)pi (r)∇φi (r) = 0 marking
the “strong”-stationary state. In particular, the exact (non-degenerate) ground state
indeed corresponds to the vanishing spatial phase, φ0(r) = 0, in its general (complex)
form ϕ0(r) = R0(r) exp[iφ0(r)] = R0(r), and hence the vanishing current distribu-
tion j0(r) = 0, thus fulfilling both the necessary (“weak”) and sufficient (“strong”)
conditions of the state true stationarity.

However, the familiar examples of degenerate electronic states in molecules and
of the plane-wave state of a free particle show that satisfying the necessary con-
dition, of the system weak stationary character, i.e., of the time-independent prob-
ability distribution, does not always imply the fulfillment of the sufficient condi-
tion, of the strong stationary state, i.e., of the state vanishing current. Indeed, in the
latter case the wave function ϕk(r, t) = A exp[i(k · r − ωk t)] describes only the
“weak”-stationary state, pk(r, t) = pk = |A|2, and generates the finite local current
j k(r) = j k = (h̄/m)pkk = |A|2V , where the particle classical velocity (momentum
pk per unit mass) V = pk/m.

This one-electron development can be straightforwardly generalized into the N -
electronic states in the familiar orbital approximation, described by Slater determi-
nants of the occupied single-electron states [9,10,19–31]. Since the electronic density,
current, and entropy or information operators are one-electron in character, the expec-
tation values of their sums over all constituent electrons are given by the sums of
their expectation values in each occupied MO. In constructing the Slater determinant
reproducing the specified electron density one uses the Harriman–Zumbach–Maschke
(HZM) construction [45,46] of the Density Functional Theory (DFT) [47–49], which
realizes the crucial insights due to Macke [50] and Gilbert [51].

3 Classical entropy/information measures and their nonclassical supplements

Let us briefly summarize the entropy/information concepts of classical IT [1–8]. The
historically first local measure of Fisher [1,2] provides the average information content
in the probability density p(r) reminiscent of von Weizsäcker’s [52] inhomogeneity
correction to the kinetic energy functional in the Thomas–Fermi–Dirac theory,
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I [p] =
∫

[∇ p(r)]2/p(r)dr ≡
∫

p(r)Ip(r)d r, (8)

where Ip(r) = [∇ p(r)/p(r)]2 ≡ I class.(r) stands for the associated information
density-per-electron. This probability functional is simplified when expressed in terms
of its classical probability aplitude R(r) = √

p(r),

I [p] = 4
∫

[∇ R(r)]2d r ≡ I [R] ≡ I class.[ϕ] = 〈ϕ|Îp|ϕ〉,
Îp(r) = Ip(r), (9)

thus revealing that it effectively measures the average length of the gradient of the
state modulus function R(r).

The global measure of Shannon [3,4] provides a complementary to I [p] classical
descriptor of the average information in p(r), called the Shannon entropy,

S[p] = −
∫

p(r) log p(r)dr ≡
∫

p(r)Sp(r)d r ≡ Sclass.[ϕ] = 〈ϕ|Ŝp|ϕ〉,
Ŝp(r) = − log p(r) = Sp(r), (10)

where Sp(r) ≡ Sclass.(r) measures the density-per-electron of this classical descrip-
tor. The Fisher information I [p] measures the distribution “narrowness” (determinic-
ity, order), while the complementary Shannon descriptor S[p] reflects the probability
“spread” (indeterminicity, disorder). Thus, the less Shannon entropy in the probability
distribution, of the indeterminicity information, implies the more electronic gradient
information, of Fisher’s determinicity descriptor. This “inverse” character of these
classical measures also extends into their resultant analogs including the nonclassical
entropy/information components [21,28].

A presence of a finite spatial phase φ(r), i.e., of a nonvanishing electronic current
related to the phase gradient, signifies a displacement from the system (“strong”) sta-
tionarity; the less stringent (“weak”) stationarity requirement, of the time-independent
probability distribution, admits a nonvanishing spatial phase of the system wave func-
tion generating electronic current. This is the case in the molecular equilibrium states
[9,10,19–31], which maximize the state resultant entropy. The presence of a finite
current introduces the additional “structure” element of quantum systems, affect-
ing the system resultant entropy/information. This finite current pattern implies less
“uncertainty” (more “order”) in the molecular electronic state compared to its classi-
cal information content, i.e., the negative sign of the nonclassical entropy supplement.
Therefore, the complex quantum states should be expected to exhibit less resultant
indeterminicity information (more resultant determinicity information), compared to
the stationary states of the same probability distribution.

The resultant Fisher information combines the classical kinetic-energy contribution,
from the gradient of the state modulus, and the nonclassical kinetic-energy term due tho
the phase gradient. This implies a positive sign of the nonclassical phase contribution
to resultant gradient determinicity information. For a single electron in state ϕ(r) the
resultant gradient measure of the information content, related to the system average
electronic kinetic energy,

123



J Math Chem (2015) 53:1126–1161 1131

T [ϕ] = 〈ϕ| T̂ |ϕ〉 = − h̄2

2m

∫

ϕ∗(r)�ϕ(r)d r = h̄2

2m

∫

|∇ϕ(r)|2d r. (11)

contains both the classical (probability) and nonclassical (phase/current) components:

I [ϕ] = 〈ϕ|Î|ϕ〉 = 4
∫

|∇ϕ(r)|2d r = (8m/h̄2)T [ϕ]

= I [p] + 4
∫

p(r)[∇φ(r)]2d r ≡ I [p] + I [p, φ]

= I [p] +
(

2m

h̄

)2 ∫

j2(r)/p(r)dr ≡ I [p] + I [p, j ]

≡ I class.[ϕ] + I nclass.[ϕ] ≡
∫

p(r)[Ip(r)+ Iφ(r)]d r ≡
∫

p(r)I (r)d r. (12)

This overall quantum Fisher information is seen to probe the length of the gra-
dient ∇ϕ(r) of the state quantum amplitude (wave function). This generalized gra-
dient determinicity information for locality events combines both the classical, von
Weizsäcker’s functional I class.[ϕ] = I [p] = ∫

p(r) Ip(r)dr, and the nonclassical
term I nclass.[ϕ] = ∫

p(r)Iφ(r)d r = I [p, φ] = I [p, j ] due to the state phase (or
probability current), reflecting the square of the phase gradient. The relevant informa-
tion densities-per-electron,

I class.(r) = 4[∇ R(r)]2 ≡ Ip(r) and

I nclass.(r) = 4[∇φ(r)]2 = (2m/h̄)2 [ j(r)/p(r)]2 ≡ Iφ(r), (13)

define the (multiplicative) information operator of Eq. (12): Î(r) = Ip(r)+ Iφ(r) =
I (r).

One also observes that the densities-per-electron of the classical entropy and gra-
dient information are mutually related [9,10]:

I class.(r) = [∇lnp(r)]2 = [∇Sclass.(r)]2. (14)

Thus, the square of the gradient of the Shannon probe of the state indeterminicity infor-
mation generates the density of the associated Fisher measure of the state determinicity
information.

The nonclassical complement of the Shannon entropy, Snclass.[ϕ] [9,19,22–27],

Snclass.[ϕ] = 〈ϕ|Ŝϕ |ϕ〉 = −2
∫

p(r) φ(r) d r = S[p, φ] ≡
∫

p(r) Sϕ(r) d r ≤ 0,

Ŝϕ(r) = −2φ(r) = Snclass.(r) = Sϕ(r), (15)

exhibits a nonpositive density proportional to the local magnitude of the phase function,
|φ| = [φ2]1/2 ≡ φ ≥ 0, the square root of the phase-density π = φ2, with the particle
probability p providing a local “weighting” factor. This functional characterizes a
displacement from the strong-stationary equilibrium in terms of the average magnitude
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of the state spatial phase. It complements the classical Shannon entropy of Eq. (10) in
the resultant measure of the quantum indeterminicity content in both the probability
and current distributions of the complex electronic state ϕ:

S[ϕ] = Sclass.[ϕ] + Snclass.[ϕ] = 〈ϕ|Ŝ|ϕ〉 ≡
∫

p(r) S(r) d r,

Ŝ(r) = Sp(r)+ Sφ(r) = S(r) = −lnp(r)− 2φ(r). (16)

The relation of Eq. (14) then also applies to the nonclassical entropy/information
densities [9,10,19–31]:

I nclass.(r) =
(

2m j(r)
h̄ p(r)

)2

= 4[∇φ(r)]2 ≡ [∇Snclass.(r)]2. (17)

The nondegenerate ground state �0, for which φ0(r) = 0 and hence j0(r) = 0,
corresponds to the so called vertical equilibrium marking the phase-maximum of the
nonclassical entropy component, i.e., of the nonclassical indeterminicity-information
content, Snclass.[φ0] ≡ 0, in close analogy to the maximum-entropy principle of
the ordinary thermodynamics [32]. Therefore, any local phase displacement from
this strong stationary state, δφ(r) = φ(r) − φ0(r) = φ(r), lowers the nonclas-
sical entropy component, δSnclass.[δφ] = S[p0, φ] ≤ 0, where p0(r) stands for
the (constrained) electron probability distribution in the ground-state. The comple-
mentary picture emerges, when one adopts the Fisher-type measure of the gradient
information content. Now this vertical equilibrium for the fixed ground-state prob-
ability distribution p0(r) represents the minimum of the nonclassical determinicity-
information content: I nclass.[φ0] ≡ I [p0, φ0] = 0. Thus, any phase displace-
ment from φ0 increases the nonclassical (phase-gradient) information content by
δ I nclass.[δφ] = δ I nclass.[φ] ≡ I [p0, φ] ≥ 0.

In a search for thermodynamic analogies of interest also is the concept of the
gradient measure of the state resultant entropy (quantum indeterminicity-information)
[20,21]:

Ĩ [ϕ] = I [p] − I [p, φ] ≡ Ĩ class.[ϕ] + Ĩ nclass.[ϕ]. (18)

Its classical part is determined by the ordinary Fisher information in the probability
distribution, Ĩ class.[ϕ] = I [p], while the nonclassical complement is now nonpositive,
Ĩ nclass.[ϕ] = −I [p, φ] ≤ 0, to conform to the sign of the nonclassical entropy of
Eq. (16). Indeed, the classical entropy (average uncertainty) reflects the information
received, when the indeterminicity about the electron position in the distribution p(r)
is removed by an appropriate measurement. This justifies a selection of the classical
part of this gradient entropy measure. It has been demonstrated elsewhere [28,29],
that both S[ϕ] and Ĩ [ϕ] indeed predict the same solutions of the so called horizontal-
equilibrium problem, of the extremum of the resultant quantum entropy.

To summarize, the system electron distribution, related to the wave-function mod-
ulus, reveals the probability (classical) aspect of the molecular information content,
while the phase(current) facet of the molecular state gives rise to the specifically
quantum (nonclassical) entropy/information terms. Together these two contributions
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allow one to monitor the full (resultant) information content of, say, non-equilibrium
or variational quantum states, thus providing the complete information description of
their evolution towards the final equilibrium.

The negative sign of the nonclassical global and gradient entropy contributions
can be justified by comparing the phase/current entropy in the (one-dimensional)
traveling and standing waves of the same amplitude. The strong-stationary distri-
bution of a “standing” wave, resulting from the equal, 50 % probabilities of the
“left” and “right” “traveling” waves and hence the vanishing average current, pre-
dicts S[p, φ] = I [p, φ] = 0. The weak-stationary distribution of the traveling-wave,
say 100 % “right” plane-wave, represents a finite current in this direction thus giving
rise to S[p, φ] < 0 and Ĩ [p, φ] < 0. This qualitative result reproduces correctly the
intuitive expectation that we have more electronic determinicity (less uncertainty) in
the traveling-wave situation, in which the direction of the flux is precisely known, com-
pared to the standing-wave case, in which we are completely ignorant of the current
direction.

4 Phase-continuity

We continue the representative one-electron development of the preceding section.
The quantum dynamics of general electronic states,

ψ(r, t) ≡ 〈r|ψ(t)〉 = R(r, t) exp[iφ(r, t)], (19)

is determined by the Schrödinger equation (SE):

(ih̄)−1Ĥψ = (∂ψ/∂t). (20a)

This equation and its complex conjugate,

− (ih̄)−1Ĥψ∗ = (∂ψ∗/∂t), (20b)

can be subsequently used to determine the time evolution of the probability distribution
p(r, t) or its classical amplitude R(r, t), and to establish the associated dynamics of
the state phase φ(r, t) or its square, the phase density π(r, t) = φ(r, t)2.

Let us multiply Eq. (20a) by ψ∗ and Eq. (20b) by ψ :

(ih̄)−1ψ∗Ĥψ = (ih̄)−1(ψ∗T̂ψ + pv)

= − [h̄/ (2mi)]ψ∗�ψ − i(p/h̄)v = ψ∗(∂ψ/∂t) and

−(ih̄)−1ψĤψ∗ = −(ih̄)−1(ψT̂ψ∗ + pv)

= [h̄/ (2mi)]ψ�ψ∗ + i(p/h̄)v = ψ(∂ψ∗/∂t). (21)

Taking first the sum of these two equations gives the familiar continuity equation for
the electronic probability density:

(ih̄)−1(ψ∗T̂ψ−ψT̂ψ∗) = − [h̄/ (2mi)] (ψ∗�ψ−ψ�ψ∗) = −∇ · j = ∂p/∂t. (22)
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This (sourceless) balance relation of the electronic distribution,

dp/dt ≡ ṗ = σp = ∂p/∂t + ∇ · j = 0, (23)

also implies the conservation in time of the probability (wave function) normalization:

d〈ψ(t) |ψ(t)〉/dt = d

[∫

p(r, t) d r
]

/dt =
∫

[dp(r, t) /dt] d r = 0. (24)

The difference of Eqs. (21) similarly generates the time-derivative of the state phase
φ(r, t):

(ih̄)−1(ψ∗T̂ψ + ψT̂ψ∗ + 2pv) = − [h̄/ (2mi)] (ψ∗�ψ + ψ�ψ∗)+ (ih̄)−12pv

= − [h̄/ (mi)] [R�R − p(∇φ)2] + (ih̄)−12pv

= ψ∗(∂ψ/∂t)− ψ(∂ψ∗/∂t) = 2ip(∂φ/∂t) or

(∂φ/∂t) = [h̄/ (2m)] [R−1�R − (∇φ)2] − v/h̄. (25)

This derivative also implies the associated dynamics of the phase density π(r, t) =
φ(r, t)2:

∂π/∂t = 2φ(∂φ/∂t) = (h̄φ/m)[R−1�R − (∇φ)2] − 2φv/h̄. (26)

Therefore, in general molecular states of Eq. (19) the wave-function phase is evolving
in time thus changing the phase-related contributions to the resultant descriptors of the
information content. The time rate of change in the state phase is seen to be determined
by spatial variations of both the modulus and phase components of molecular electronic
states, as well as by the shape of the external potential.

Ascribing the flux concept to the phase aspect of molecular states, which ultimately
determines the partition of this time-derivative between the “outflow” and “source”
contributions in the underlying phase-continuity equation, is not unique. In the past
several alternative choices of the phase-current have been proposed, differing in their
implicit definitions of the representative “velocity” Vπ (r) of the phase “fluid”:

π(r, t) = π [r − Vπ (r)t] or π(r + Vπ (r)�t, t +�t) = π(r, t) . (27)

Different phase-flow concepts only reshuffle the time rate of change in the state phase-
density between the outflow and source contributions in the underlying phase conti-
nuity equation.

It should be observed that in quantum mechanics the particle speed,

〈ϕ|V̂(r)|ϕ〉 = p(r)−1〈ϕ|ĵ(r)|ϕ〉 = V (r), (28)

the expectation value of the (Hermitian) velocity operator [Eq. (5)],

V̂(r) = [2mp(r)]−1[p̂(r)δ(r1 − r)+ δ(r1 − r)p̂(r)], (29)
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is not sharply specified simultaneously with the given electron position r. Although
such a phase-velocity in molecular quantum mechanics generally differs from the
classical speed V class. = p/m = V of the free particle exhibiting the momentum
p = h̄k, the most natural choice seems to follow from the requirement that the phase
“current” is indeed effected by the movement of the probability fluid itself [see Eq.
(5)]: Vπ (r) = V (r). In this perspective the flow of the particle probability is also
responsible for the flow of the state phase. In other words, it is the electrons which
also carry the density of the phase in the molecular state. Such a definition of the phase
velocity gives rise to the flow descriptor

J(r, t) = π(r, t) V (r, t) = h̄

m
π(r, t)∇φ(r, t) ≡ Jπ (r, t) (30)

related to the probability current of Eq. (4a):

J(r) = [π(r)/p(r)] j(r). (31)

The corresponding (purely φ-dependent) divergence term,

∇ · J(r) = h̄

m
[∇π(r) · ∇φ(r)+ π(r)�φ(r)] = h̄φ(r)

m
{2[∇φ(r)]2 + φ(r)�φ(r)}

= ∇ [π(r)/p(r)] · j(r)+ [π(r)/p(r)] ∇ · j(r), (32)

then determines the outflow part in the associated phase-continuity equation,

∂π(r)/∂t = −∇ · J(r)+ σπ(r), (33)

thus also identifying the associated phase-source contribution:

σπ(r) = dπ(r)/dt = ∂π(r)/∂t + ∇ · J(r) (34)

= φ(r){(h̄/m) [R(r)−1�R(r)+ φ(r)�φ(r)+ (∇φ(r))2] − 2v(r)/h̄} �= 0.

The latter is seen to identically vanish only for real wave functions, when φ(r) = 0,
e.g., in the strong-stationary state of Eq. (6).

Another phase-current concept follows from the principle of the maximum symme-
try in treating the modulus and phase degrees-of-freedom of the molecular electronic
states. Since the probability current of Eq. (5) explores the probability density p(r) and
the phase gradient ∇φ(r), one assumes, for greater symmetry, that the phase current
should similarly explore the phase density π (r) and the modulus gradient ∇ R(r). This
produces the most symmetrical definitions of the two flux quantities,

j(r) = h̄

m
p(r)∇φ(r) = h̄

2m

p(r)
φ(r)

∇π(r) and

J(r) = h̄

m
π(r)∇ R(r) = h̄

2m

π(r)
R(r)

∇ p(r) ≡ J sym.(r), (35)

related by a variant of Eq. (31):
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J sym.(r) =
[
π(r)
p(r)

∇ R(r)
∇φ(r)

]

j(r). (36)

This choice generates the following divergence and source terms, which mix both the
p(or R) and π (or φ) dependencies:

∇ · J sym.(r) = h̄φ(r)
m

{2[∇φ(r)] · [∇ R(r)] + φ(r)�R(r)}, (37)

σ sym.
π (r) = ∂π(r)/∂t + ∇ · J sym.(r)

= φ(r){(h̄/m) (�R(r)[φ(r)+ R−1(r)]
+∇φ(r) · [2∇ R(r)− ∇φ(r)])− 2v(r)/h̄}. (38)

Since different concepts of the phase-flux only redistribute the known time-rate of
the phase density [Eq. (26)] between the outflow (divergence) and source contributions
in the phase balance (continuity) Eq. (33), one could also, for definiteness, ascribe the
whole time derivative of this equation either exclusively to the phase source, for the
identically vanishing phase current,

∂π(r)/∂t ≡ σ abs.
π (r) and Jπ (r) ≡ 0 (39a)

or exclusively to the phase-outflow, for the vanishing source contribution,

∂π(r)/∂t ≡ −∇ · Jabs.(r) and σπ(r) = 0. (39b)

Each choice has its interpretative advantages: the former offers the strong-stationary
perspective, while the latter provides the sourceless balance outlook [compare Eqs.
(22) and (23)] on the time evolution of the phase component of electronic states.

5 Continuity of resultant entropy

Consider next a related problem of the source term in the continuity equation for the
state resultant entropy S[ϕ] [Eq. (16)], which combines positive classical (probability-
spread) measure of Shannon entropy, S[p] ≡ Sclass.[ϕ], and (negative) nonclassical
supplement reflecting the average magnitude of the state phase, S[π ] ≡ Snclass.[ϕ],

S[ϕ] = Sclass.[ϕ] + Snclass.[ϕ]
= −

∫

p(r)lnp(r)dr − 2
∫

p(r)π(r)1/2d r

≡ S [p, π ] ≡
∫

s(r)d r. (40)

Following the standard approach of the ordinary thermodynamics [32], we first identify
the entropy conjugates of the two independent density variables: p = |ϕ|2 = R2 and
π = φ2. For the adopted positive phase convention, φ > 0, when π1/2 = |φ| = φ,
one then finds:
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Fp(r) = δS[ϕ]/δp(r) = ∂s(r)
∂p(r)

=−lnp(r)− 2π(r)1/2 − 1=−lnp(r)− 2φ(r)−1,

Fπ (r) = δS[ϕ]/δπ(r) = ∂s(r)
∂π(r)

= −p(r)/π(r)1/2 = −p(r)/φ(r). (41)

These entropy-conjugates of the probability and phase densities then determine the
associated affinities, “thermodynamic” forces, defined by their gradients:

G p = ∇Fp = −[p−1∇ p + π−1/2∇π ] = −2[R−1∇ R + ∇φ] and

Gπ = ∇Fπ = π−1/2{[p/(2π)]∇π − ∇ p} = (R/φ)[(R/φ)∇φ − 2∇ R]. (42)

It follows from these definitions that in the strong-stationary state ϕ j , when
φ[ϕ j ] = 0 and j [ϕ j ] = 0, S[ϕ] = Sclass.[ϕ]. Therefore, in such states Fπ = 0
and hence the phase-affinity Gπ = ∇Fπ identically vanishes, while the probabil-
ity affinity remains finite. One also observes that in the horizontal equilibrium state
[24,25],

ϕeq.(r) = ϕ(r) exp(iφeq. [p; r]),

φeq. [p; r] ≡ φeq.(r) = − (1/2) lnp(r) = φ[ϕeq.] ≥ 0, (43)

which marks the phase-extremum of the resultant entropy S[ϕ], the probability affinity
vanishes while the phase affinity remains finite.

Let us now reexamine the phase-equilibrium conditions, of the vanishing forces
G p(r) or Gπ (r). The first condition, G p(r) = 0, determines the equilibrium state and
phase of the preceding equation, for which the probability current

j [ϕeq.] ≡ j eq. = − [h̄/ (2m)] ∇ p. (44)

The second criterion, Gπ (r) = 0 or ∇lnφeq.(r) = ∇lnp(r), predicts the equilibrium
phase proportional to the probability density, φeq.(r) = Cp(r), ϕeq. = ϕ exp(iφeq.),
and hence j [ϕeq.] = C(h̄/m)p∇ p. These two phase-transformed equilibrium states
thus exhibit the same probability distribution but differ in their current densities.

One next introduces the current density of the resultant quantum entropy for the
adopted choice of the phase-flux Jπ (r):

J s(r) = Fp(r) j p(r)+ Fπ (r)Jπ (r). (45)

In the associated entropy-continuity equation,

ds(r)/dt ≡ ṡ(r) = σs(r) = ∂s(r)/∂t + ∇ · J s(r), (46)

its divergence∇·J s(r) determines the corresponding entropy inflow to the infinitesimal
region around r. The first term in the right-hand side of the preceding equation is
suggested by the entropy differential,
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d S[p, π ] =
∫
∂s(r)
∂p(r)

dp(r)d r +
∫
∂s(r)
∂π(r)

dπ(r)d r

=
∫

[Fp(r)dp(r)+Fπ (r)dπ(r)]d r, (47)

∂s(r)/∂t = Fp(r)
∂p(r)
∂t

+ Fπ (r)
∂π(r)
∂t

, (48)

while the divergence of the entropy current generally gives:

∇ · J s = (∇Fp) · j p + (∇Fπ ) · Jπ + Fp∇ · j p + Fπ∇ · Jπ
= G p · j p + Gπ · Jπ + Fp∇ · j p + Fπ∇ · Jπ . (49)

When combined with the probability- and phase-continuity equations these relations
give the following, thermodynamic-like expression for the rate of the local production
of the resultant quantum entropy:

σs(r) = G p(r) · j p(r)+ Gπ (r) · Jπ (r)+ Fπ (r)σπ (r). (50)

This expression simplifies for the absolute definitions of the phase-source and
phase-current concepts [Eqs. (39a, 39a)]. In the former the second term of the preced-
ing equation vanishes:

σs(r) = G p(r) · j p(r)+ Fπ (r)σ abs.
π (r). (51a)

Therefore, this local production of the resultant quantum entropy vanishes in the
strong-stationary state ϕ j , σs[ϕ j ; r] = 0, e.g., in the nondegenerate ground state of a
molecule for which φ[ϕ j ] = 0, j p(r) = 0 and σπ [ϕ j ] = 0.

The second absolute reference gives the truly thermodynamic expression, solely in
terms of products of the affinities and conjugate fluxes,

σs(r) = G p(r) · j p(r)+ Gπ (r) · Jabs.
π (r). (51b)

This definition indeed implies that zero affinities give rise to vanishing source of the
quantum entropy, as is the case in the ordinary irreversible thermodynamics [32].

6 Promolecule to molecule transition

This phenomenological IT treatment allows one to tackle interesting chemical prob-
lems involving specific equilibrium relaxations in the electronic structure of molecules
and their constituent fragments. As an illustration let us examine a local estimate of
the time required for the equilibrium promolecule→molecule relaxation in the one-
electron molecular system, e.g., the prototype covalent half-bond of H+

2 ≡ A—B.
One invisages an equilibrium transition between the equilibrium state φ0

eq.(r), for the
promolecular phase ϕ0

eq.(r) = −(1/2)lnp0(r) determined by the probability density
p0 = (pA

0 + pB
0 )/2 of the (equally weighted) ground-state distributions of the isolated

hydrogen atoms, and the equilibrium molecular state ϕeq.(r), exhibiting the phase
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φeq.(r) = −(1/2)lnp0(r) specified by the molecular ground-state probability density
p0. Even a local estimate of this quantity would be of great value for both the struc-
tural chemistry and reactivity theory, by allowing one to distinguish a fast (chemically
“hard”) and slow (chemically “soft”) relaxing processes and regions in the molecular
system under consideration. A relation between the regional chemical reactivity and
its average relaxation time is also intriguing. One would be also interested in differ-
ences between such temporal descriptors of the bonding and nonbonding regions in a
molecule.

In what follows we shall refer to the local relaxation in the molecular electronic
structure, from the initial, variationally non-optimum promolecular density p0(r)
at time t0(r) ≡ 0 to the variationally optimum molecular density p0(r), after the
relaxation time τ(r) = t (r) − t0(r) = t (r). In this transition the initial difference
of the probability density, measuring a displacement from the relaxed distribution
p0,�p(r) = p0(r) − p0(r) ≡ −g(r; 0), acts as the driving force (negative time
“gradient”) for this structure rearrangement. It effects the return of the system to the
molecular equilibrium p0(r) at time τ(r), via the distribution spontaneous response
δp(r) = −�p(r), the negative of the displacement from the equilibrium distribution,
which relaxes the initial force to zero: g(r; τ) = 0.

We adopt the quadratic approximation, in which this probability “gradient” is lin-
early dependent on time:

g(r; τ) = g(r; 0)+ H(r; 0) τ, H(r; 0) = ∂g(r, t)

∂t

∣
∣
∣
∣
t0

. (52)

It also determines the quadratic expansion at time t = 0 of a density F(r, t) of the
physical quantity called the probability “action”, [F] = [probabili t y × t ime],

F =
∫

F(r, t) d r =
∫ {∫

g(r; t) dt

}

d r, (53)

F(r, t)− F(r, t0) ≡ �F(r, t) ∼= ∂F(r, t)

∂t

∣
∣
∣
∣
t0

τ(r)+ 1

2

∂2 F(r, t)

∂t2

∣
∣
∣
∣
t0

τ(r)2

= g(r; 0)τ (r)+ 1/2H(r; 0)τ (r)2, (54)

determined by its (time-independent) “gradient” g(r; 0) ≡ g(r) and “Hessian” H (r; 0)
≡ H (r) of Eq. (52). These local derivatives at t0(r) = 0 also determine the approximate
time-dependent gradient of Eq. (52). The latter eventually vanishes when the molecular
equilibrium is finally reached, after the “relaxation” time

τ(r) = −g(r)/H(r). (55)

The local time-dependence of the system electron probability density p(r, t) is deter-
mined by the probability continuity [Eqs. (22) and (23)]. For the equilibrium electronic
states at each stage of this transition [see Eq. (44)],

∂p(r, t) /∂t = −∇· j eq.(r, t) = h̄

m
∇·[p(r, t)∇φeq.(r, t)] = h̄

2m
∇2 p(r, t). (56)
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Therefore, the Laplacian of the density determines the rate of the equilibrium evolution
of the local probability density in time. For the stationary equilibrium distribution
p(r; t) = p(r), and hence the time-independent Laplacian ∇2 p(r, t) = ∇2 p(r), the
integration of the preceding equation over time expresses the relaxation time τ(r) in
terms of the initial probability displacement �p(r):

t0(r)+τ(r)∫

t0(r)

∂p(r, t)

∂t
dt = p(r; τ)− p(r; 0)=−�p (r, τ ) = δp (r, τ )= h̄τ(r)

2m
∇2 p(r).

(57)
The Laplacian of the promolecular probability distribution p0(r) can be thus used

to estimate the promolecule→molecule local relaxation time τ (r). This (promolecular)
integration over time required for the electron distribution to evolve, in the horizontal-
equilibrium fashion, from the (nonequilibrium) promolecular p0(r)(t0 = 0) to (equi-
librium) molecular p0(r)[t = τ(r)] density, respectively, identifies the relevant pro-
molecular time gradient and Hessian:

τ(r)∫

0

∂p(r, t)

∂t
dt = h̄τ(r)

2m
∇2 p0(r) = p0(r)− p0(r) ≡ −�p(r) or

τ(r) = − 2m�p(r)
h̄∇2 p0(r)

≡ −g0(r)
H0(r)

, g0(r) = �p(r),

H0(r) = ∂2 F0(r; t) /∂t2 |t=0= ∂g0 (r; t) /∂t |t=0= h̄∇2 p0(r)
2m

. (58)

Here, g0(r) and H0(r) stand for the local promolecular time gradient and Hessian,
respectively, which determine the second-order change in the probability action
[Eqs. (53), (54)]:

�(1+2)F0(r; t) = g0(r)τ (r)+ (1/2) H0(r)[τ(r)]2. (59)

The relaxation time τ(r) then gives rise to the vanishing local probability force after
this interval:

g0[τ(r)] = g0(r)+ H0(r)τ (r) = 0. (60)

Alternatively, by taking the molecular density p0(r) as the expansion starting point,
for the initial time t = τ(r), the promolecular (displaced) distribution p0(r) is reached
via the reverse molecule→promolecule propagation to time t = 0. This (molecular)
time integration gives:

0∫

τ(r)

∂p(r, t)

∂t
dt = h̄[−τ(r)]

2m
∇2 p0(r) = p0(r)− p0(r) ≡ �p(r) or

τ(r) = −2m�p(r)
h̄∇2 p0(r)

≡ −g0(r)
H0(r)

, g0(r) = �p(r) = g0(r),
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H0(r) = ∂2 F0(r; t) /∂t2 |t=τ= ∂g0(r; t) /∂t |t=τ= h̄∇2 p0(r)
2m

. (61)

This transition generates the molecular quadratic expansion of the probability-action
density,

�(1+2)F0 (r; t) = −g0[τ(r)]τ(r)+ (1/2) H0(r)[τ(r)]2 = (1/2) H0(r)[τ(r)]2,

(62)
where we have recognized the vanishing molecular time-gradient: g0[τ(r)] = 0.

Therefore, Eqs. (58) and (61) give rise to the consistency condition,

τ(r) = −g0(r)
H0(r)

= −g0(r)
H0(r)

, (63)

yielding the unbiased estimate of the local relaxation time,

τ(r) = −
[
g0(r)/2

] [
H0(r)−1 + H0(r)−1

]
≡ −g0(r)/H(r), (64)

for the transition-state probability Hessian H(r) = Hh(r) representing the harmonic
(h) average (reduced) value resulting from the promolecular and molecular estimates.

To summarize, the local transition time,

τ(r) = −m�p(r)
h̄

(
1

∇2 p0(r)
+ 1

∇2 p0(r)

)

≡ − 2m�p(r)

h̄ ∇2 p(r)
∣
∣
h

= −g0(r)/Hh(r),

Hh(r) = 2H0(r)H0(r)
H0(r)+ H0(r)

= h̄∇2 p(r) |h
2m

, ∇2 p(r)
∣
∣
∣
h

= 2[∇2 p0(r)][∇2 p0(r)]
∇2 p0(r)+ ∇2 p0(r)

,

(65)

is thus determined by the harmonic average of the density Laplacian in the harmonic
time Hessian Hh(r), corresponding to the transition-state between these two extreme
electron configurations. To avoid a negative time predictions in this harmonic approx-
imation, one could adopt the modulus of this local time estimate. These predictions
can be subsequently averaged over the whole physical space or its selected domains. A
natural space-average (global) value of this local relaxation time is obtained by using
the molecular probabilities as weights in the associated mean-value expression:

τ =
∫

p0(r)τ (r)d r. (66)

As an illustration consider the prototype covalent half-bond in H+
2 , in the minimum

basis set description of two 1s AO contributed by the constituent hydrogens, for the
fixed internuclear distance R (atomic units are used throughout):

χX (rX) = 1sX (rX)=π−1/2 exp (−rX) , rX =|rX (R)| ≡ |r−RX (R)| , X=A,B.

(67)
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In the ground-state the system electron occupies the bonding MO

ϕb(r) = {2 [1 + S(R)]}−1/2 [χA(rA)+ χB(rB)] ≡ N (R) [χA(rA)+ χB(rB)],
(68)

where the normalization constant N (R) depends on the overlap integral

S(R) = 〈χA|χB〉 = e−R
(

1 + R + R2/3
)
. (69)

The two (spherical) densities of constituent atoms,

pX(rX) = [χX(rX)]2 = π−1 exp (−2rX) , X = A,B, (70)

determine the symmetrical (promolecular) reference distribution p0(r) = [pA(rA)+
pB(rB)]/2. They also generate the atomic Laplacians {∇2 pX(rX) = (4/π)(1 −
1/rX) exp(−2rX)} and hence the Laplacian of the promolecular probability distri-
bution:

∇2 p0(r) = [∇2 pA(rA)+ ∇2 pB(rB)]/2. (71)

The molecular probability density is similarly generated by the occupied MO:

p0(r) = [ϕb(r)]2 = N 2(R)[pA(rA)+ pB(rB)+ 2χA(rA) χB(rB)] ≡ p0(rA, rB) .

(72)
It generates the associated molecular Laplacian

∇2 p0 (rA, rB) = N 2(R)

⎧
⎨

⎩
∇2 pA(rA)+ ∇2 pB(rB)

+ [pA(rA) pB(rB)]
1/2 [2(1 + eA · eB)−

∑

X=A,B

∇ · eX]
⎫
⎬

⎭
, (73)

where the unit vector eX = rX/rX.
Consider now three illustrative locations along the bond axis, for the collinear rA

and rB, when eA = −eB: in the bonding region, at the bond midpoint, r = rm , when
rA = rB = R/2, in the position of one nucleus, say r → RA, and in the nonbonding
part of orbital χA, r = rn for rA = R/2 and rB = 3R/2. These axial positions remove
the contribution to the molecular Hessian due to the overlap between two atomic
densities. For R = 2 ≈ Re, these locations give the following probability differences
(time-gradients):

p0(rm) = 1.261pA(rm) > p0(rm) = pA(rm) = 0.0431 or g(rm) = −0.011,
p0(RA) = 0.129 < p0(RA) = 0.162 or g(RA) = 0.033,
p0(rn) = 0.035 > p0(rn) = 0.029 or g(rn) = −0.006.
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The bonding electron position gives the molecular Laplacian

∇2 p0(rm) = {2/ [1 + S(R)]}[pA(rm)+ pB(rm)] (1 − 2/R)

= {4/ [1 + S(R)]} pA(R/2)(1 − 2/R). (74)

It vanishes for R = 2,∇2 p0[rm(R = 2)] = ∇2 p0[rm(R = 2)] = H((R = 2) = 0,
thus predicting an infinite value of τ [rm(R = 2)] → ∞ close to the equilibrium
bond length of H+

2 , Re = 1.997, for which the dissociation energy De = 0.103.
It reflects an infinitely “soft” character in the middle of the bonding region. In the
nuclear-cusp position the Laplacian diverges due to ∇2 pA(rA → 0) → −∞, thus
predicting τ(RA) → 0, i.e., an infinitely “hard” electron location in H+

2 . Finally, for
the nonbonding location one obtains H(rn) = 0.001 and hence a finite estimate of
the local relaxation time τ(rn) ≈ 7.

7 Ground and excited configurations of π -electrons in benzene

The phase/current aspect of the molecular electronic structure gains an extra signifi-
cance in the domain of degenerate electronic states. As an illustrative example let us
consider excited configurations of the π -electron system in benzene, within the famil-
iar Hückel approximation of the LCAO MO theory, consisting of Nπ = 6 valence
2pz-electrons contributed by the ring carbons. All π -MO’s are then expanded in the
minimum basis set comprising of the χ ≡ 2pz AO contributed by the six ring carbons,

{χk(r) = N zk exp(−αrk), rk = |r − Rk | , k = 1, 2, . . . , 6},
πs(r) =

∑

k

Ck,sχk(rk) , s = 1, 2, . . . , 6, (75)

where N = 〈χ |χ〉−1/2 is the AO-normalization constant and Rk = (i Xk+ jYk+kZk)

stands for the fixed position of kth carbon nucleus, with the AO axes perpendicular to
the molecular (x, y; Zk = 0) plane: zk = z − Zk = z.

One recalls that all π -MO in benzene are completely determined by the ring sym-
metry, with the three lowest (doubly-occupied) AO combinations including the (non-
degenerate) normalized sum of all basis functions,

π1(r) = (1/6)1/2
∑

k

χk(rk) , ε1 = α + 2β, (76)

and two degenerate (real) MO’s:

π2(r) = (1/3)1/2
∑

k

cos(π k/3)χk(rk) ,

π3(r) = (1/3)1/2
∑

k

sin(π k/3)χk(rk) , ε2 = ε3 = α + β, (77)
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where the MO energies {εs} are expressed in terms of the familiar Coulomb (α < 0)
and resonance (β < 0) integrals of carbon atoms in the Hückel theory.

The two MO of Eq. (77) can be interpreted as the real (Re) and imaginary (Im) parts
of their equivalent linear combinations ϕ1(r) and ϕ1(r)∗ exhibiting complex expansion
coefficients:

π2(r) = (1/2) [ϕ1(r)+ ϕ∗
1 (r)] = Re[ϕ(r)] and

π3(r) = [1/ (2i)] [ϕ1(r)− ϕ∗
1 (r)] = Im[ϕ(r)], (78)

where

ϕ1(r) ≡ R1(r) exp[iΦ1(r)] = (1/2)1/2 [π2(r)+ iπ3(r)]
= (1/6)1/2

∑

k

[cos(πk/3)+ i sin(πk/3)]χk(rk)

= (1/6)1/2
∑

k

exp[i(πk/3)]χk(rk)

≡ (1/6)1/2
∑

k

exp(iφk)χk(rk) ≡
∑

k

ζkχk(rk) , (79)

where R1(r) and Φ1(r) stand for the resultant modulus and phase functions of ϕ1(r).
These complex MO are also eigenfunctions of the π -electron Hamiltonian with the
same eigenvalue ε2 = ε3. Thus, the state vector ϕ1(r) of Eq. (79) and its complex
conjugate

ϕ∗
1 (r) ≡ R1(r) exp[−iΦ1(r)] = (1/2)1/2 [π2(r)− iπ3(r)]

= (1/6)1/2
∑

k

[cos(πk/3)− i sin(πk/3)]χk(rk)

= (1/6)1/2
∑

k

exp[−i(πk/3)]χk(rk)

= (1/6)1/2
∑

k

exp(−iφk)χk(rk) ≡
∑

k

ζ ∗
k χk(rk) , (80)

are the (local) unitary transforms of the original (orthonormal) MO,

[ϕ1, ϕ
∗
1 ] = [π2, π3] 1√

2

[
1 1
i −i

]

= [π2, π3] U, UU† = I, (81)

and, together with the lowest orbital π1, they give rise to the same one-determinantal
electronic state of π -electrons as do the original (real) doubly-occupied MO:

�π = det
[(
π+

1 , π
−
1

)
,
(
π+

2 , π
−
2

)
,
(
π+

3 , π
−
3

)]

= det
[(
π+

1 , π
−
1

)
, (ϕ+

1 , ϕ
−
1 ), (ϕ

∗+
1 , ϕ∗−

1 )
] ≡ �0. (82)

123



J Math Chem (2015) 53:1126–1161 1145

In this notation the upper indices (+, −) of MO defining the Slater determinant denote
the alternative spin states of an electron: {|σ 〉} = {|h̄/2〉,|−h̄/2〉} ≡ {|+〉, |−〉}.

To summarize, the degenerate complex π -MO [Eqs. (79), (80)] are linear com-
binations of the real basis functions with complex LCAO MO coefficients {ζk =
Rk exp(iφk)} and {ζ ∗

k = Rk exp(−iφk)}, respectively, characterized by the AO phases
{φk = π k/3} and equal moduli {Rk = (1/6)1/2}. The expansion coefficients
Z = {Zk,s} of the ground-state occupied equivalent MO

ϕs ∈ (π1, ϕ1, ϕ
∗
1 ) ≡

∑

k

Zk,sχk, (83)

where Zk,1 = Ck,1 = (1/6)1/2, Zk,2 = ζk and Zk,3 = ζ ∗
k , define the (symmetric, real)

1-electron density matrix in AO representation, also called the Charge and Bond-Order
(CBO) matrix

γ(�0) = 2Z(�0)Z(�0)
† =

{

γk,l(�0) =
∑

s

Zk,s(�0)
∗ns(�0)Zl,s(�0)

= (1+ exp{i[π(l−k)/3]} + exp{i[π(k − l)/3]})/3=(1+2cos[π(l−k)/3])/3
}

.

(84)

Its elements are summarized by the representative diagonal and off-diagonal predic-
tions:

γk,k(�0) = 1, γk,k+1(�0) = 2/3, γk,k+2(�0) = 0, γk,k+3(�0) = −1/3. (85)

Their signs indicate that �0, generating equal distribution of π -electrons (γk,k), rep-
resents a strongly ortho-bonding (γk,k+1), meta-nonbonding (γk,k+2), and weakly
para-antibonding (γk,k+3) state of the ring π -electrons.

For the the expectation value of the local current of Eq. (4a), defined by the Her-
mitian operator of Eq. (4b), one then obtains the sum of the MO currents,

j s(r) = 〈ϕs |ĵ(r)|ϕs〉 = (h̄/m)ps(r)∇Φs(r), ps(r) = Rs(r)2, (86)

j(r) ≡
∑

s

ns j s(r) =
∑

k

∑

l

〈χk |ĵ(r)|χl〉
(
∑

s

Z∗
l,sns Zk,s

)

=
∑

k

∑

l

〈χk |ĵ(r)|χl〉γl,k ≡
∑

k

∑

l

j k,l(r)γl,k

= tr[j(r)γ] = tr[γj(r)] =
∑

k

∑

l

h̄

2mi
(γk,l − γl,k)χk(r)∇χl(r)
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= h̄

m

∑∑

k �=l

[
1

2i
(γk,l − γ ∗

k,l
)

]

χk(r)∇χl(r)

= h̄

m

∑∑

k �=l
Im(γk,l )χk (r)∇χl (r), (87)

where the (antisymmetric) AO matrix of the current operator

j(r) =
{

jk,l(r) = 〈χk |ĵ(r)|χl〉 = h̄

2mi
[χk(r)∇χl(r)− χl(r)∇χk(r)]=− j l,k(r)

}

.

(88)

Here, we have used the Hermitian character of γ and ns stands for the MO occu-
pation number. This expression shows that strongly overlapping basis functions of
the ortho-bonds, for which local contributions χk(r)∇χk+1(r) assume an appreciable
magnitude, dominate the resultant electronic current. One further observes that for the
real basis set the diagonal elements of the AO current matrix j(r) identically vanish,
j k,k(r) = 0.

For the real (symmetric) CBO matrix, when γl,k = γk,l , the antisymmetry of
Eq. (88) gives rise to an exact cancellation of the off-diagonal terms in the trace od
Eq. (87):

γl,k jk,l(r)+ γk,l j l,k(r) = γk,l
[

j k,l(r)+ j l,k(r)
] = 0. (89)

This does not take place in configurations generating the complex CBO matrix. Indeed,
by putting γk,l ≡ Mk,l exp(iφk,l), φk,l �= 0, one obtains from the CBO Hermitian
character (γk,l)

∗ = Mk,l exp(−iφk,l) = γl,k �= γk,l . Thus, the cancellation of Eq. (89)
then no longer holds, giving rise to a finite current of π -electrons in such open-shell
configurations.

It should be recalled that the CBO matrix embodies the AO-representation of the
(Hermitian) MO density-operator,

P̂MO =
∑

s

|ϕs〉 ps 〈ϕs |, (P̂MO)
† = P̂MO, γk,l = Nπ 〈χk |P̂MO|χl〉. (90)

projecting out the subspace of the MO occupied in the electronic configuration in
question. The latter is identified either by the MO occupation vector n = {ns} or the
associated MO-probabilities p = {ps = ns/Nπ }. Therefore, the CBO matrix itself
is Hermitian, γl,k = (γk,l)

∗, with real diagonal elements, γk,k = (γk,k)
∗, but for the

complex off-diagonal elements γl,k �= γk,l .
Therefore, the average local current of π -electrons of the benzene ring in their

non-degenerate ground-state identically vanishes. Indeed, all MO currents j s(r) then
automatically vanish, since the MO phase is purely time dependent, φs(r, t)=φ0(t)=
−ω0t, ω0 = E0/h̄, and hence ∇φs(r, t)= 0. The same is true in the open-shell
(excited) π -electron configurations, which populate equaly both components of the
degenerate MO energy levels. For example, in the doubly excited (singlet) configura-
tion
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�1 = det
[(
π+

1 , π
−
1

)
, (ϕ+

1 , ϕ
∗+
1 ), (ϕ−

2 , ϕ
∗−
2 )

]
, (91)

involving the doubly occupied π1 and the singly occupied ϕ1, its complex conjugate
ϕ∗

1 , and the corresponding pair (ϕ2, ϕ
∗
2 ) of the degenerate (virtual) MO level,

ϕ2(r)= (1/2)1/2 [π4(r)+iπ5(r)]=(1/6)1/2
∑

k

[cos(2πk/3)+i sin(2πk/3)]χk(rk)

= (1/6)1/2
∑

k

exp[i(2πk/3)]χk(rk) ≡ (1/6)1/2
∑

k

exp(iφk,2)χk(rk) ,

ε4 = ε5 = α − β, (92)

gives rise to the following element of the CBO matrix γ(�1),

γk,l(�1) = {1 + 2cos [π (l − k) /2]cos[π (l − k) /6]} /3. (93)

It predicts the representative values:

γk,k(�1) = 1, γk,k+1(�1) = 1/3, γk,k+2(�1) = 0, γk,k+3(�1) = 1/3. (94)

Their signs again indicate the weakly ortho-bonding, meta-nonbonding, and weakly
para-bonding nature of this electronic configuration.

The complete set of the ground-state real and complex π -MO,

{ϕs ∈ [π1, (ϕ1, ϕ
∗
1 ), (ϕ2, ϕ

∗
2 ), π6]}, (95)

where the highest π -MO involves alternating signs of the LCAO MO coefficients at
neighboring atoms,

π6(r) = (1/6)1/2
∑

k

(−1)k+1 χk(rk) , ε6 = α − 2β, (96)

defines a convenient reference frame for discussing the complex elements of the CBO
matrix in all excited configurations of π -electron in benzene, although the real and
complex π -MO are no longer physically equivalent in such states. However, keep-
ing the “frozen” complex MO, equivalent in the ground state configuration, allows
one to systematically monitor changes due to the electron excitations in the bond
multiplicities (or “orders”), with respect to the reference ground state.

Another example of the symmetric population pattern of degenerate components
represents the antibonding configuration involving six electron excitations from �0,

�2 = det
[
(ϕ+

2 , ϕ
−
2 ), (ϕ

∗+
2 , ϕ∗−

2 ),
(
π+

6 , π
−
6

)]
. (97)

It also gives rise to the real CBO matrix γ(�2),

γk,l(�2) =
{
(−1)k+l 2cos [2 π (l − k) /3]

}
/3, (98)
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generating the following matrix elements representing AO populations and the ortho-,
meta-, and para-interactions in this extreme antibonding state of the benzene π -bond
ring:

γk,k(�2) = 1, γk,k+1(�2) = −2/3, γk,k+2(�1) = 0, γk,k+3(�1) = 1/3. (99)

They indicate that this configuration exhibits the strongly ortho-antibonding, meta-
nonbonding and weakly para-bonding character, opposite to that of �0.

Two more symmetric-population configurations,

�3 = det
[(
π+

1 , π
−
1

)
, (ϕ+

2 , ϕ
−
2 ), (ϕ

∗+
2 , ϕ∗−

2 )
]
(quadruply excited) and (100)

�4 = det
[
(ϕ+

1 , ϕ
−
1 ), (ϕ

∗+
1 , ϕ∗−

1 ),
(
π+

6 , π
−
6

)]
(doubly excited) , (101)

generate the following expressions for their (real) CBO matrix elements:

γk,l(�3) = {1 + 2cos [2 π (l − k) /3]} /3 and

γk,l(�4) = {(−1)k+l + 2cos [π (l − k) /3]}/3. (102)

They give rise to the following predictions,

γk,k(�3) = 1, γk,k+1(�3) = γk,k+2(�3) = 0, γk,k+3(�3) = 1 and (103)

γk,k(�4) = 1, γk,k+1(�4) = γk,k+2(�4) = 0, γk,k+3(�4) = −1/3, (104)

which indicate that both these states are ortho- and meta-nonbonding. Notice, however,
that �3 realizes the full strength of the weak cross-ring para-bond, while �4 remains
weakly para-antibonding.

Of interest also is the π1 → π6 excitation generating

�5 = det
[
(ϕ+

1 , ϕ
−
1 ), (ϕ

∗+
1 , ϕ∗−

1 ), π+
1 , π

−
6

]
, (105)

for which

γk,l(�5) = (2/3) cos [π (l − k) /3] + (1/6) [(−1)k+l + 1], (106)

and hence:

γk,k(�5) = 1, γk,k+1(�5) = 1/3, γk,k+2(�5) = 0, γk,k+3(�5) = −2/3.

(107)

This configuration thus appears weakly ortho-bonding, meta-nonbonding, and
strongly para-antibonding.

In a systematic study of the bond-order changes one should also consider three
more configurations representing a symmetric population pattern:

�6 = det [(ϕ+
2 , ϕ

−
2 ), (ϕ

∗+
2 , ϕ∗−

2 ), π+
1 , π

−
6 ], (108)
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involving 5 excitations, the triply excited state

�7 = det [π+
1 , ϕ

+
1 , ϕ

−
2 , ϕ

∗+
1 , ϕ∗−

2 , π−
6 ], (109)

and the quadruply excited configuration

�8 = det
[(
π+

6 , π
−
6

)
, ϕ+

1 , ϕ
∗+
1 , ϕ−

2 , ϕ
∗−
2

]
. (110)

These π -electron determinants generate the corresponding CBO matrix elements:

γk,l(�6) = (2/3) cos [2 π (l − k) /3] + (1/6) [(−1)k+l + 1], (111)

γk,l(�7) = (1/3) {cos [π (l − k) /3] + cos [2 π (l − k) /3]} + (1/6) [(−1)k+l + 1],
(112)

γk,l(�8) = (1/3) {(−1)k+l + cos [π (l − k) /3] + cos [2 π (l − k) /3]}. (113)

They predict the following intra- and inter-carbon bond orders in the benzene ring:

γk,k(�6) = 1, γk,k+1(�6) = −1/3, γk,k+2(�6) = 0, γk,k+3(�6) = 2/3;
(114)

γk,k(�7) = 1, γk,k+1(�7) = 0, γk,k+2(�7) = 0, γk,k+3(�7) = 0; (115)

γk,k(�8) = 1, γk,k+1(�8) = γk,k+3(�8) = −1/3, γk,k+2(�8) = 0. (116)

Therefore, configuration�7 is truly nonbonding in both the ring and cross-ring interac-
tions, �6 is weakly ortho-antibonding, meta-nonbonding and strongly para-bonding,
while �8 exhibits a weak ortho- and para-antibonding character while remaining
meta-nonbonding.

After this brief exploration of configurations exhibiting the symmetric-population
of degenerate levels, let us examine selected nonsymmetric distributions of electrons
among such doubly degenerate states, which can lead to the complex CBO matri-
ces. Let us first examine the energetically most accessible single excitations from
ϕ1, (ϕ1 → ϕ2) and (ϕ1 → ϕ∗

2 ),

�9 = det
[(
π+

1 , π
−
1

)
, (ϕ∗+

1 , ϕ∗−
1 ), ϕ+

1 , ϕ
−
2

]
and (117)

�10 = det
[(
π+

1 , π
−
1

)
, (ϕ∗+

1 , ϕ∗−
1 ), ϕ+

1 , ϕ
∗−
2

]
. (118)

The representative CBO matrix elements then read:

γk,l(�9) = {1 + exp [i (k − l)π/3]} /3
+{exp [i (l − k)π/3] + exp [i (l − k) 2π/3]} /6 and (119)

γk,l(�10) = {1 + exp [i(k − l)π/3]}/3
+{exp [i(l − k)π/3] + exp [i(k − l)2π/3]}/6. (120)
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They accordingly predict

γk,k(�9) = 1, γk,k+1(�9) = 1/2,

γk,k+2(�9) = −i/(2
√

3), γk,k+3(�9) = 0 and (121)

γk,k(�10) = 1, γk,k+1(�10) = 1/2 − i/(2
√

3),

γk,k+2(�10) = γk,k+3(�10) = 0. (122)

Similar complex CBO predictions follow from the associated pair of excitations
from ϕ∗

1 , (ϕ
∗
1 → ϕ∗

2 ) and (ϕ∗
1 → ϕ2),

�11 = det
[(
π+

1 , π
−
1

)
, (ϕ+

1 , ϕ
−
1 ), ϕ

∗+
1 , ϕ∗−

2

]
and (123)

�12 = det
[(
π+

1 , π
−
1

)
, (ϕ+

1 , ϕ
−
1 ), ϕ

∗+
1 , ϕ−

2

]
. (124)

The relevant CBO data,

γk,l(�11) = {1 + exp[i(l − k)π/3]}/3
+{exp[i(k − l)π/3] + exp[i(k − l)2π/3]}/6 and (125)

γk,l(�12) = {1 + exp [i(l − k)π/3]}/3
+{exp [i(k − l)π/3] + exp [i(l − k)2π/3]}/6, (126)

then predict:

γk,k(�11) = 1, γk,k+1(�11) = 1/2,

γk,k+2(�11) = i/(2
√

3), γk,k+3(�11) = 0 and (127)

γk,k(�12) = 1, γk,k+1(�12) = 1/2 + i/(2
√

3),

γk,k+2(�12) = γk,k+3(�12) = 0. (128)

One observes that CBO data for�11 and�12 represent the complex conjugates of the
corresponding predictions for �9 and �10, respectively.

Consider now some energetically less accessible single excitations. The first pair
represents the (π1 → ϕ2) and (π1 → ϕ∗

2 ) configurations,

�13 = det [(ϕ+
1 , ϕ

−
1 ), (ϕ

∗+
1 , ϕ∗−

1 ), π+
1 , ϕ

−
2 ] and (129)

�14 = det [(ϕ+
1 , ϕ

−
1 ), (ϕ

∗+
1 , ϕ∗−

1 ), π+
1 , ϕ

∗−
2 ], (130)

for which general CBO expressions read:

γk,l(�13) = (2/3) cos [π (l − k) /3] + (1/6) {1 + exp [i (l − k) 2π/3]} and

(131)

γk,l(�14) = (2/3) cos [π (l − k) /3] + (1/6) {1 + exp [i (k − l) 2π/3]} . (132)
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Again, they give rise to the mutually complex conjugate predictions:

γk,k(�13) = 1, γk,k+1(�13) = 5/12 + i/(4
√

3),

γk,k+2(�13) = −1/4 − i/(4
√

3), γk,k+3(�13) = −1/3; (133)

γk,k(�14) = 1, γk,k+1(�14) = 5/12 − i/(4
√

3),

γk,k+2(�14) = −1/4 + i/(4
√

3), γk,k+3(�14) = −1/3. (134)

The second conjugate pair involves the (ϕ1 → π6) and (ϕ∗
1 → π6) excitations:

�15 = det
[(
π+

1 , π
−
1

)
, (ϕ∗+

1 , ϕ∗−
1 ), ϕ+

1 , π
−
6

]
and (135)

�16 = det
[(
π+

1 , π
−
1

)
, (ϕ+

1 , ϕ
−
1 ), ϕ

∗+
1 , π−

6

]
, (136)

for which:

γk,l(�15) = (1/3) [1+exp [iπ (k−l) /3]+(1/6) {(−1)k+l +exp [i (l−k)π/3]} and

(137)

γk,l(�16) = (1/3) [1 + exp [iπ (l − k) /3] + (1/6) {(−1)k+l + exp [i (k − l)π/3]}.
(138)

The specific predictions for π-electron populations and the ring or cross-ring bonds
then read:

γk,k(�15) = 1, γk,k+1(�15) = 5/12 − i/(4
√

3),

γk,k+2(�15) = 1/4 − i/(4
√

3), γk,k+3(�15) = −1/3; (139)

γk,k(�16) = 1, γk,k+1(�16) = 5/12 + i/(4
√

3),

γk,k+2(�16) = 1/4 + i/(4
√

3), γk,k+3(�16) = −1/3. (140)

Finally, we examine two pairs of the conjugate configurations resulting from the
localized double excitations from (ϕ1, ϕ

∗
1 ) to (ϕ2, ϕ

∗
2 ) MO:

�17 = det
[(
π+

1 , π
−
1

)
, (ϕ∗+

1 , ϕ∗−
1 ), (ϕ+

2 , ϕ
−
2 )
]
, (141)

�18 = det
[(
π+

1 , π
−
1

)
, (ϕ+

1 , ϕ
−
1 ), (ϕ

∗+
2 , ϕ∗−

2 )
]
, (142)

and

�19 = det
[(
π+

1 , π
−
1

)
, (ϕ∗+

1 , ϕ∗−
1 ), (ϕ∗+

2 , ϕ∗−
2 )

]
, (143)

�20 = det
[(
π+

1 , π
−
1

)
, (ϕ+

1 , ϕ
−
1 ), (ϕ

+
2 , ϕ

−
2 )
]
. (144)

General expressions for the CBO data in AO resolution then read:

γk,l(�17) = (1/3)
[
1 + exp [iπ (k − l) /3] + exp [i2 (l − k)π/3]

]
, (145)

γk,l(�18) = (1/3)
[
1 + exp [iπ (l − k) /3] + exp [i2 (k − l)π/3]

]
, (146)
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γk,l(�19) = (1/3)
[
1 + exp [iπ (k − l) /3] + exp [i2 (k − l)π/3]

]
, (147)

γk,l(�20) = (1/3)
[
1 + exp [iπ (l − k) /3] + exp [i2 (l − k)π/3]

]
. (148)

They give rise to the following atomic populations and the ring inter-carbon bond
orders of π -electrons:

γk,k(�17) = 1, γk,k+1(�17)=1/3, γk,k+2(�17) = −i/
√

3, γk,k+3(�17)=1/3;
(149)

γk,k(�18) = 1, γk,k+1(�18) = 1/3, γk,k+2(�18) = i/
√

3, γk,k+3(�18)=1/3;
(150)

γk,k(�19) = 1, γk,k+1(�19)=1/3−i/
√

3, γk,k+2(�19)=0, γk,k+3(�19)=1/3;
(151)

γk,k(�20) = 1, γk,k+1(�20)=1/3+i/
√

3, γk,k+2(�20)=0, γk,k+3(�20)=1/3.

(152)

In each pair of these electronic states the predicted values of the corresponding bond
orders are again seen to be complex conjugates of each other.

8 Bond descriptors and information measures in complex states

In all configurations the predicted electron populations of π -electron basis functions
are equal, γk,k = 1, for all carbons in the ring. The predicted bond-orders (k �= l)

γk,l = Re(γk,l)+ i Im(γk,l) = Mk,l exp(iφk,l) (153)

in the selected π -electronic states of benzene are listed in Table 1, together with their
modulus (Mk,l) and phase (φk,l , in degrees) characteristics (see also Fig. 1):

Mk,l = {[Re(γk,l)]2 + [Im(γk,l)]2}1/2, φk,l = arctan[Im(γk,l)/Re(γk,l)]. (154)

One observes in the table that the para bond-orders are real for all configurations
considered, thus giving rise to the vanishing contributions from these cross ring bonds
to the resultant electronic current.

As argued elsewhere [33–43] the chemical intuition on bond multiplicities {Nk,l(α)}
in the given configuration �α is well reflected by the squares of the real CBO matrix
elements {γk,l(α)},

Nk,l(α) = sign[γk,l(α)][γk,l(α)]2, (155)

with their signs keeping the memory of the bonding (plus) or antibonding (minus) char-
acter of the underlying AO interactions. The complex generalization of this Wiberg-
type approach calls for the chemical bond-order measure determined solely by the
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Table 1 The bond orders for the ortho, meta and para π -bonds of benzene carbon ring in selected electron
configurations

α Ortho Meta Para

γk,k+1 Mk,k+1 φk,k+1 γk,k+2 Mk,k+2 φk,k+2 γk,k+3 Mk,k+3 φk,k+3

0 2/3 2/3 0 0 0 0 −1/3 1/3 0

1 1/3 1/3 0 0 0 0 1/3 1/3 0

2 −2/3 2/3 0 0 0 0 1/3 1/3 0

3 0 0 0 0 0 0 1 1 0

4 0 0 0 0 0 0 −1/3 1/3 0

5 1/3 1/3 0 0 0 0 −2/3 2/3 0

6 −1/3 1/3 0 0 0 0 2/3 2/3 0

7 0 0 0 0 0 0 0 0 0

8 −1/3 1/3 0 0 0 0 −1/3 1/3 0

9 1/2 1/2 0 −i/(2
√

3) 1/
√

12 90 0 0 0

10 1/2 − i/(2
√

3) 1/
√

3 −30 0 0 0 0 0 0

11 1/2 1/2 0 i/(2
√

3) 1/
√

12 90 0 0 0

12 1/2 + i/(2
√

3) 1/
√

3 30 0 0 0 0 0 0

13 5/12+i/(4
√

3)
√

7/6 19 −1/4 − i/(4
√

3) 1/
√

12 30 −1/3 1/3 0

14 5/12 − i/(4
√

3)
√

7/6 −19 −1/4 + i/(4
√

3) 1/
√

12 −30 −1/3 1/3 0

15 5/12 − i/(4
√

3)
√

7/6 −19 1/4 − i/(4
√

3) 1/
√

12 −30 −1/3 1/3 0

16 5/12 + i/(4
√

3)
√

7/6 19 1/4 + i/(4
√

3) 1/
√

12 30 −1/3 1/3 0

17 1/3 1/3 0 −i/
√

3 1/
√

3 −30 1/3 1/3 0

18 1/3 1/3 0 i/
√

3 1/
√

3 30 1/3 1/3 0

19 1/3 − i/
√

3 2/3 −60 0 0 0 1/3 1/3 0

20 1/3 + i/
√

3 2/3 60 0 0 0 1/3 1/3 0

Fig. 1 The complex CBO
matrix element
γk,l = Mk,l exp(iφk,l ) and its
use in diagnosing the bonding
status of the chemical π
interactions between carbons k
and l in the benzene ring
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real part Re[γk,l(α)] of the complex matrix element:

Nk,l(α) = sign[Re(γk,l)]{Re[γk,l(α)]}2. (156)

Of interst also are some global bond-multiplicity indices, of the system as a whole,
e.g., the overall numbers of the bonding (b, positive) and antibonding (a, negative)
inter-atomic interactions in �α ,

Nb(α) =
∑∑

k<l
Nk,l(α), Nk,l(α) > 0,

Na(α) =
∑∑

k<l
Nk,l(α), Nk,l(α) < 0, (157)

and their sum measuring the resultant global multiplicity:

�N (α) = Nb(α)+ Na(α). (158)

Next, let us examine expressions for the nonclassical information contributions
in this single-determinant approximation of the wave function describing the ring π
electrons, �(π) = det(ϕ), expressed in terms of the configuration occupied π -MO

ϕ(r) = {ϕs(r) ≡ Rs(r) exp[iΦs(r)]}, (159)

each expanded in the real AO basis χ(r) = {χk(r)} of the six carbon 2pz orbitals,

ϕ(r) = χ(r)Z. (160)

The LCAO MO coefficients Z are generally complex,

Z = {Zk,s = Mk,s exp(iφk,s)}, (161)

being characterized by their respective moduli {Mk,s} and phases {φk,s} in the com-
plex plane. The resultant MO phase [Φs(r)] and modulus [Rs(r)] functions of the
representative MO

ϕs(r)=�k[χk(r)Mk,s] exp(iφk,s)≡�kmk,s(r)exp(iφk,s)≡ Rs(r)exp[iΦs(r)]
(162)

then read:

Φs(r) = arctan{[�kmk,s(r)sin(φk,s)]/[�kmk,s(r)cos(φk,s)]}
= arctan{Im[ϕs(r)]/Re[ϕs(r)]}, (163)

Rs(r) = {Re[ϕs(r)]2 + Im[ϕs(r)]2}1/2. (164)
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The configuration (phase/current)-related entropy/information quantities can be
then expressed as sums of their expectation values in the occupied MO states:

Snclass.[�] = �sns Snclass.[ϕs] and I nclass.[�] = �sns I nclass.[ϕs]; (165)

here ns is the MO occupation in configuration �0(π ) and the MO expectation values
can be expressed in terms of the MO resultant modulus and phase functions:

Snclass.[ϕs] = 〈ϕs |Ŝnclass.|ϕs〉 = −2
∫

ps(r) |Φs(r)|d r

≡ −2
∫

ps(r)Φs(r) d r, ps(r) = [Rs(r)]2 ;

I nclass.[ϕs] = 〈ϕs |Înclass.|ϕs〉 = 4
∫

ps(r) [∇Φs(r)]2d r. (166)

The overall average measures are then obtained as integrals over local traces:

Snclass.[�] = −2
∫

tr[F(r; s)ω(r)]dr,

F(r; s) = {Fk,l(r; s) = �s Z∗
k,s[nsΦs(r)]Zl,s}, (167)

I nclass.[�] = 4
∫

tr[G(r; s)ω(r)]dr,

G(r; s) = {Gl,k(r; s) = �s Z∗
k,s{ns[∇Φs(r)]2}Zl,s}. (168)

These nonclassical entropy and gradient (Fisher-type) information functionals are
thus generated by the functional densities determined by traces of products of the
local matrices of the phase-magnitude, F(r; s), or the phase-gradient, G(r; s), and
the AO overlap matrix ω(r) = {ωk,l(r) = χk(r)χl(r)} groups the corresponding AO
products.

The electron density ρα(r) of π -electrons in the configuaration�α = det(ϕα) can
be similarly expressed in terms of MO densities {ρs(r)} or the associated probability
distributions {ps(r) = ρs(r)/ns} of the state occupied MO ϕα:

ρα(r) =
occd(α)∑

s

nsϕs(r)ϕ∗
s (r) ≡

occd(α)∑

s

ns ps(r) ≡
occd(α)∑

s

ρs(r)

= �k�l(�s Zk,sns Z∗
l,s)χl(r)χk(r) ≡ �k�lγl,k ωk,l(r) ≡ tr[γω(r)]. (169)

The corresponding expression for the average current, which explores the gradient
of the MO phases, involves only the imaginary part of the CBO matrix, Im(γ) =
1/(2i)(γ−γ∗). Its real part, Re(γ) = (1/2)(γ+γ∗), similarly determines a pattern of
the chemical bond multiplicities in the electronic state under consideration (see Fig. 1
and Table 2).

Indeed, in the preceding section we have already used the sign of the (real) CBO
matrix elements, of the symmetric-population configurations (�0, . . . , �8), in a qual-
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Table 2 Orbital excitation energies and π bond multiplicitis in benzene

α �E Nk,k+1 Nk,k+2 Nk,k+3 Nb −Na �N �Northo

0 0 4/9 0 −1/9 8/3 1/3 7/3 8/3

1 4 1/9 0 1/9 1 0 1 2/3

2 16 −4/9 0 1/9 1/3 8/3 −7/3 −8/3

3 8 0 0 1 3 0 3 0

4 8 0 0 −1/9 0 1/3 −1/3 0

5 4 1/9 0 −4/9 2/3 4/3 −2/3 2/3

6 12 −1/9 0 4/9 4/3 2/3 2/3 −2/3

7 8 0 0 0 0 0 0 0

8 12 −1/9 0 −1/9 0 1 −1 −2/3

9 ÷ 12 2 1/4 0 0 3/2 0 3/2 3/2

13, 14 3 25/144 −1/16 −1/9 25/24 17/24 1/3 25/24

15, 16 3 25/144 1/16 −1/9 17/12 1/3 13/12 25/24

17 ÷ 20 4 1/9 0 1/9 1 0 1 2/3

itative diagnosis of the bonding (γk,l > 0), nonbonding (γk,l = 0), and antibonding
(γk,l < 0) character of the inter-atomic chemical interactions. The complex-plane gen-
eralization of this criterion for γk,l = Mk,l exp(iφk,l), in terms of the the γk,l -phase,
φk,l , is shown in Fig. 1: the left half-plane (π ≥ φk,l > π/2) covers the antibonding
interactions, the imaginary axis (φk,l = π/2) corresponds to the nonbonding charac-
ter, while te right half-plane (0 ≤ φk,l < π/2) marks the chemically π -bonded status
of the specified pair of carbon atoms.

A chemical relevance of the CBO matrix elements and the bond multiplicities
they imply is also revealed by their dependencies on the π -electron orbital excitation
energy reative to the ground-state. The accepted chemical intuition indeed suggests
that with increasing excitation energy, given by the difference of the π -MO energies
{εs} occupied in �α and �0, respectively,

�E(α) =
occd(α)∑

s

nsεs −
occd(0)∑

s

nsεs ≡ E(α)− E(0) , (170)

there should be less overall bonding [Nb(α)] and more antibonding [−Na(α)] bond
multiplicity descriptors in the π system. One is also interested how this energy influ-
ences individual matrix elements corresponding to the ortho, meta and para interac-
tions in benzene. Thus, a net excess�N (α) of the bonding (positive) interactions over
antibonding (negative) ones, is also expected to exhibit a decreasing (nonlinear) corre-
lation with increasing�E(α). One recalls that this energy difference also determines
the amount of mixing of the excited configuration �α into the (correlated) ground
state in the Configuration Interaction (CI) representation,

�CI
0 = �α�αCα,0, (171)

123



J Math Chem (2015) 53:1126–1161 1157

Fig. 2 The
Re[γk,l (α)] = Re[γk,l (�E(α)]
plots for the ortho (l = k + 1, a),
meta (l = k + 2, b) and para
(l = k + 3, c) π -bonds in
benzene

with the perturbational expansion coefficient Cα,0 = 〈�α|�CI
0 〉 being inversely pro-

portional to �E(α).
One should also recognize the known differences between the ring (ortho, strong-

overlap) and cross-ring (meta, para, weak-overlap) interactions, with the former dom-
inating the overall chemical bond stabilization of the benzene π -bond system. There-
fore, one would expect similar correlation between increasing�E(α) and the resultant
bond multiplicity index limited only to the strongest (nearest-neighbor) ortho bonds:

�Northo(α) = {Nb(α, ortho) = 6Northo(α), for γortho(α) > 0;
Na(α, ortho) = 6Northo(α), for γortho(α) < 0}. (172)

One observes that there are altogether 6 distinct ortho and meta bonds, and three para
interactions in benzene ring, each exhibiting the same bond-order or bond-multiplicity
characteristics.

The relevant excitation energies, in units (−β) > 0, and bond multiplicities, gen-
erated using the CBO data grouped in Table 1, are listed in Table 2, while selected
correlations with respect to the MO excitation energy are tested in Figs. 2 and 3. The
aim of the former figure is to check energy correlations of the real part of the π bond-
orders themselves, while the latter investigates the energetical dependence of their
squares, i.e., the multiplicities of the ortho, meta and para π bonds in the benzene
ring. In the first�N (α) = �N [�E(α)] plot of Fig. 3, predictions for�3, �5 and�6,
which do not affect the second�Northo(α) = �Northo[�E(α)] plot o the figure, have
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Fig. 3 The
�N (α) = �N [�E(α)] (a) and
�Northo(α) =
�Northo[�E(α)] (b) plots for
π -bonds in benzene

been ignored as dominated by multiplicities of the weakest para-interactions (see also
Table 2).

A reference to Tables 1 and 2 and Figs. 2 and 3 shows that the crucial ortho-bonds
indeed exhibit a decreasing correlations γk,k+1(�E) and �Northo(�E) of the bond-
order/multiplicity measures with increasing excitation energy. This is clearly seen in
the exactly linear CBO correlation of Fig. 2a and the associated bond multiplicity
plot of Fig. 3b. The para interactions, always marked by the real bond-orders, are
seen to generate a scatter of points in a wide area of the CBO plot shown in Fig. 2c.
It is responsible for a lower quality of the overall multiplicity correlation (Fig. 3a)
relative to the ortho-only plot (Fig. 3b). The predicted meta bond orders stay practically
nonbonded, thus giving rise to a vanishing bond multiplicity and remaining unaffected
by electron excitations. This analysis indicates that the strong ortho-bonds alone should
be recommended in probing changes of the chemical bond pattern upon excitation.
The erratic, small influence of the cross-ring bonds only distorts predictions, compared
to chemical expectations.

One also observes that the ground-state configuration �0 does not generate the
highest multiplicity of all π -bonds in the system. This maximum value is reached in
the excited configuration �3, giving rise to exactly three (weakest) para-bonds in the
benzene ring. Therefore, the “entropic” quantity of the overall bond multiplicity of
all bonds should not be associated with the chemical bond-strength or bond-energy
concepts. The latter are more closely linked, though, to the overall multiplicity of
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the strongest (ortho) bonds in the benzene ring, with the weak cross-ring interac-
tions being either energetically irrelevant (meta) or contributing only a small, “noisy”
supplement (para) to the resultant bond-stabilization energy in these excited electron
configurations.

9 Conclusion

In degenerate electronic states the AO density matrix can involve the complex elements
leading to a nonvanishing spatial phase of the system wave function and hence a finite
probability current. This gives rise to non-zero nonclassical (phase/current related)
entropy and information descriptors and calls for a generalization of the multiplicity
descriptors used to explore the state bond pattern. In this work we have summarized the
quantum supplements of the classical entropy/information concepts, to accommodate
such complex wave functions (probability amplitudes) of the quantum-mechanical
description of molecular electronic states. The phase and resultant entropy continuity
problems have also been reexamined. In this phenomenological framework, which
results directly from the Schrödinger equation, one introduces the concept of the
entropy-current and identifies the associated entropy-production term. This approach
can be applied to determine rates of the equilibrium molecular relaxations and their
characteristic time descriptors. An illustrative example of the transition from the pro-
molecule (non-stationary system consisting of the molecularly placed “frozen” atomic
distributions) to the molecule (stationary ground-state system) has been selected. The
temporal aspect of the promolecule→molecule structure reorganization has been qual-
itatively examined in H+

2 .
The excited configurations of the π -electron system in benzene ring have been

explored using the (ground-state) equivalent, complex MO framework in the Hückel
theory. The configuration bond-orders for the ring (ortho) and cross-ring (meta, para)
interactions have been determined and correlated with the orbital excitation energy
�E . With the increasing energy difference the ortho interactions decrease linearly,
meta bond orders remain insensitive (nonbonding), while para matrix elements behave
“chaotically”. This suggests using just the nearest-neighbor (ortho) indices as the
most adequate indicators of a changing bond pattern with electronic excitations. The
Wiberg-type bond-multiplicity concept has been extended to cover the complex CBO
matrix elements with the chemically relevant index being determined by their real
part alone. These bond descriptors also display a decreasing trend with respect to
the excitation energy, thus exhibiting less bonding (more antibonding) character with
increasing relative energy of the excited configurations.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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