44 research outputs found

    Counterion Effects on Nano-confined Metal-Drug-DNA Complexes

    Full text link
    We have explored morphology of DNA molecules bound with Cu-complexes of piroxicam molecules, a non-steroidal anti-inflammatory drug (NSAID), under one-dimensional confinement of thin films and have studied the effect of counterions present in a buffer. X-ray reflectivity at and away from the Cu K absorption edge and atomic force microscopy studies reveal that confinement segregates the drug molecules preferentially in a top layer of the DNA film, and counterions enhance this segregation

    Comparative evaluation of real-time PCR and conventional RT-PCR during two year surveillance for Influenza and RSV among children with acute respiratory infections in Kolkata reveals distinct seasonality of infection

    Get PDF
    Acute respiratory tract infections (ARTI) are one of the most common cause of morbidity and mortality in young children all over the world. Influenza and Respiratory Syncytial viruses (RSV) are the predominant etiology during seasonal epidemics and thus rapid and sensitive molecular tests for screening & timely identification of epidemics are required. In this study we report comparison of real time PCR (Q-PCR) with conventional RT-PCR for parallel identification of Influenza A or B (Inf-A or -B) and RSV. A total of 1091 respiratory samples were examined from children with suspected ARTI during January 2007- December 2008. Of these 1091 samples, 275 (25.21%) were positive for either Influenza or RSV by Q-PCR compared to 262 (24%) positives by RT-PCR. Overall Inf-A, -B and RSV were detected in a total of 121 (11.075%), 59 (5.38%) and 95 (8.68%) samples respectively. In spite of overlapping clinical symptoms, RSV and Influenza showed distinct seasonal peaks. Inf-A positively and RSV, negatively correlated with rainfall and temperature. No distinct seasonality was observed in Inf-B infections. This is the first report of a systemic surveillance of respiratory viruses with seasonal correlation and prevalence rate from Eastern India. The two year comparative analysis also confirmed feasibility of using Q-PCR in developing countries, which will not only improve scope for prevention of epidemics but also provide crucial epidemiological data from the tropical regions

    Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites

    Full text link
    BackgroundPsoriasis is a cytokine‐mediated skin disease that can be treated effectively with immunosuppressive biologic agents. These medications, however, are not equally effective in all patients and are poorly suited for treating mild psoriasis. To develop more targeted therapies, interfering with transcription factor (TF) activity is a promising strategy.MethodsMeta‐analysis was used to identify differentially expressed genes (DEGs) in the lesional skin from psoriasis patients (n = 237). We compiled a dictionary of 2935 binding sites representing empirically‐determined binding affinities of TFs and unconventional DNA‐binding proteins (uDBPs). This dictionary was screened to identify “psoriasis response elements” (PREs) overrepresented in sequences upstream of psoriasis DEGs.ResultsPREs are recognized by IRF1, ISGF3, NF‐kappaB and multiple TFs with helix‐turn‐helix (homeo) or other all‐alpha‐helical (high‐mobility group) DNA‐binding domains. We identified a limited set of DEGs that encode proteins interacting with PRE motifs, including TFs (GATA3, EHF, FOXM1, SOX5) and uDBPs (AVEN, RBM8A, GPAM, WISP2). PREs were prominent within enhancer regions near cytokine‐encoding DEGs (IL17A, IL19 and IL1B), suggesting that PREs might be incorporated into complex decoy oligonucleotides (cdODNs). To illustrate this idea, we designed a cdODN to concomitantly target psoriasis‐activated TFs (i.e., FOXM1, ISGF3, IRF1 and NF‐kappaB). Finally, we screened psoriasis‐associated SNPs to identify risk alleles that disrupt or engender PRE motifs. This identified possible sites of allele‐specific TF/uDBP binding and showed that PREs are disproportionately disrupted by psoriasis risk alleles.ConclusionsWe identified new TF/uDBP candidates and developed an approach that (i) connects transcriptome informatics to cdODN drug development and (ii) enhances our ability to interpret GWAS findings. Disruption of PRE motifs by psoriasis risk alleles may contribute to disease susceptibility.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/1/ctm2s4016901500545-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/2/ctm2s4016901500545-sup-0018.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/3/ctm2s4016901500545-sup-0002.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/4/ctm2s4016901500545.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/5/ctm2s4016901500545-sup-0009.pd

    Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance

    Full text link
    Abstract Background Psoriasis is a chronic disease characterized by the development of scaly red skin lesions and possible co-morbid conditions. The psoriasis lesional skin transcriptome has been extensively investigated, but mRNA levels do not necessarily reflect protein abundance. The purpose of this study was therefore to compare differential expression patterns of mRNA and protein in psoriasis lesions. Methods Lesional (PP) and uninvolved (PN) skin samples from 14 patients were analyzed using high-throughput complementary DNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results We identified 4122 differentially expressed genes (DEGs) along with 748 differentially expressed proteins (DEPs). Global shifts in mRNA were modestly correlated with changes in protein abundance (r = 0.40). We identified similar numbers of increased and decreased DEGs, but 4-fold more increased than decreased DEPs. Ribosomal subunit and translation proteins were elevated within lesions, without a corresponding shift in mRNA expression (RPL3, RPS8, RPL11). We identified 209 differentially expressed genes/proteins (DEGPs) with corresponding trends at the transcriptome and proteome levels. Most DEGPs were similarly altered in at least one other skin disease. Psoriasis-specific and non-specific DEGPs had distinct cytokine-response patterns, with only the former showing disproportionate induction by IL-17A in cultured keratinocytes. Conclusions Our findings reveal global imbalance between the number of increased and decreased proteins in psoriasis lesions, consistent with heightened translation. This effect could not have been discerned from mRNA profiling data alone. High-confidence DEGPs were identified through transcriptome-proteome integration. By distinguishing between psoriasis-specific and non-specific DEGPs, our analysis uncovered new functional insights that would otherwise have been overlooked.http://deepblue.lib.umich.edu/bitstream/2027.42/112309/1/13073_2015_Article_208.pd

    Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin

    Get PDF
    Abstract Background Although analysis pipelines have been developed to use RNA-seq to identify long non-coding RNAs (lncRNAs), inference of their biological and pathological relevance remains a challenge. As a result, most transcriptome studies of autoimmune disease have only assessed protein-coding transcripts. Results We used RNA-seq data from 99 lesional psoriatic, 27 uninvolved psoriatic, and 90 normal skin biopsies, and applied computational approaches to identify and characterize expressed lncRNAs. We detect 2,942 previously annotated and 1,080 novel lncRNAs which are expected to be skin specific. Notably, over 40% of the novel lncRNAs are differentially expressed and the proportions of differentially expressed transcripts among protein-coding mRNAs and previously-annotated lncRNAs are lower in psoriasis lesions versus uninvolved or normal skin. We find that many lncRNAs, in particular those that are differentially expressed, are co-expressed with genes involved in immune related functions, and that novel lncRNAs are enriched for localization in the epidermal differentiation complex. We also identify distinct tissue-specific expression patterns and epigenetic profiles for novel lncRNAs, some of which are shown to be regulated by cytokine treatment in cultured human keratinocytes. Conclusions Together, our results implicate many lncRNAs in the immunopathogenesis of psoriasis, and our results provide a resource for lncRNA studies in other autoimmune diseases.http://deepblue.lib.umich.edu/bitstream/2027.42/110307/1/13059_2014_Article_570.pd

    Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis

    Get PDF
    Abstract Background Imiquimod (IMQ) produces a cutaneous phenotype in mice frequently studied as an acute model of human psoriasis. Whether this phenotype depends on strain or sex has never been systematically investigated on a large scale. Such effects, however, could lead to conflicts among studies, while further impacting study outcomes and efforts to translate research findings. Methods RNA-seq was used to evaluate the psoriasiform phenotype elicited by 6 days of Aldara (5% IMQ) treatment in both sexes of seven mouse strains (C57BL/6 J (B6), BALB/cJ, CD1, DBA/1 J, FVB/NJ, 129X1/SvJ, and MOLF/EiJ). Results In most strains, IMQ altered gene expression in a manner consistent with human psoriasis, partly due to innate immune activation and decreased homeostatic gene expression. The response of MOLF males was aberrant, however, with decreased expression of differentiation-associated genes (elevated in other strains). Key aspects of the IMQ response differed between the two most commonly studied strains (BALB/c and B6). Compared with BALB/c, the B6 phenotype showed increased expression of genes associated with DNA replication, IL-17A stimulation, and activated CD8+ T cells, but decreased expression of genes associated with interferon signaling and CD4+ T cells. Although IMQ-induced expression shifts mirrored psoriasis, responses in BALB/c, 129/SvJ, DBA, and MOLF mice were more consistent with other human skin conditions (e.g., wounds or infections). IMQ responses in B6 mice were most consistent with human psoriasis and best replicated expression patterns specific to psoriasis lesions. Conclusions These findings demonstrate strain-dependent aspects of IMQ dermatitis in mice. We have shown that IMQ does not uniquely model psoriasis but in fact triggers a core set of pathways active in diverse skin diseases. Nonetheless, our findings suggest that B6 mice provide a better background than other strains for modeling psoriasis disease mechanisms.http://deepblue.lib.umich.edu/bitstream/2027.42/136167/1/13073_2017_Article_415.pd

    Discriminating neutrino mass models using Type II seesaw formula

    Full text link
    In this paper we propose a kind of natural selection which can discriminate the three possible neutrino mass models, namely the degenerate, inverted hierarchical and normal hierarchical models, using the framework of Type II seesaw formula. We arrive at a conclusion that the inverted hierarchical model appears to be most favourable whereas the normal hierarchical model follows next to it. The degenerate model is found to be most unfavourable. We use the hypothesis that those neutrino mass models in which Type I seesaw term dominates over the Type II left-handed Higgs triplet term are favoured to survive in nature.Comment: No change in the results, a few references added, some changes in Type[IIB] calculation

    Single-cell sequencing reveals Hippo signaling as a driver of fibrosis in hidradenitis suppurativa

    Get PDF
    Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrated the central role of the Hippo pathway in promoting extensive fibrosis in HS and provided preclinical evidence that the profibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide insights into key aspects of HS pathogenesis with broad therapeutic implications.</p

    Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era

    Get PDF
    Abstract Background Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings. Methods We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding. Results Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-ÎșB, IRF1, STAT3 and STAT4. Conclusions These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci.http://deepblue.lib.umich.edu/bitstream/2027.42/109537/1/12920_2013_Article_485.pd
    corecore