29 research outputs found
Growth of SiO2 microparticles by using modified Stober method: Effect of ammonia solution concentration and TEOS concentration
The unique structural features and suitability of the SiO2 microparticles in different application areas have mobilized a worldwide interest in the last few decades. In this report a classical method known as the Stober method has been used to synthesize silica microspheres. These microparticles have been synthesized by the reaction of tetraethyl orthosilicate (Si(OC2H5)(4), TEOS)(silica precursor)with water in an alcoholic medium (e.g. ethanol) in the presence of KCl electrolyte and ammonia as a catalyst. It has been observed that the size of the microparticles closely depends on the amount of the TEOS and ammonia. A decrease in the size of micro particles from 2.1 mu m to 1.7 mu m has been confirmed as the amount of TEOS increases from 3.5ml to 6.4ml respectively. In similar way a decrease in the diameter of the micro particles from 2.1 mu m to 1.7 mu m has been observed with increase in the ammonia content from 3ml to 9ml
Sapodilla Plum (Achras sapota) Induces Apoptosis in Cancer Cell Lines and Inhibits Tumor Progression in Mice
Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice
2,2′-Diphenyl-3,3′-Diindolylmethane: A Potent Compound Induces Apoptosis in Breast Cancer Cells by Inhibiting EGFR Pathway
<div><p>Despite recent advances in medicine, 30–40% of patients with breast cancer show recurrence underscoring the need for improved effective therapy. In this study, by <i>in vitro</i> screening we have selected a novel synthetic indole derivative 2,2'-diphenyl-3,3'-diindolylmethane (DPDIM) as a potential anti- breast cancer agent. DPDIM induces apoptosis both <i>in vitro</i> in breast cancer cells MCF7, MDA-MB 231 and MDA-MB 468 and <i>in vivo</i> in 7,12-dimethylbenz[α]anthracene (DMBA) induced Sprague-Dawley (SD) rat mammary tumor. Our <i>in vitro</i> studies show that DPDIM exerts apoptotic effect by negatively regulating the activity of EGFR and its downstream molecules like STAT3, AKT and ERK1/2 which are involved in the proliferation and survival of these cancer cells. <i>In silico</i> predictions also suggest that DPDIM may bind to EGFR at its ATP binding site. DPDIM furthermore inhibits EGF induced increased cell viability. We have also shown decreased expression of pro-survival factor Bcl-XL as well as increase in the level of pro-apoptotic proteins like Bax, Bad, Bim in DPDIM treated cells <i>in vitro</i> and <i>in vivo</i>. Our results further indicate that the DPDIM induced apoptosis is mediated through mitochondrial apoptotic pathway involving the caspase-cascade. To the best of our knowledge this is the first report of DPDIM for its anticancer activity. Altogether this report suggests that DPDIM could be an effective therapeutic agent for breast cancer.</p> </div