10 research outputs found

    Manipulating quantum Hall edge channels in graphene through Scanning Gate Microscopy

    Get PDF
    We show evidence of the backscattering of quantum Hall edge channels in a narrow graphene Hall bar, induced by the gating effect of the conducting tip of a Scanning Gate Microscope, which we can position with nanometer precision. We show full control over the edge channels and are able, due to the spatial variation of the tip potential, to separate co-propagating edge channels in the Hall bar, creating junctions between regions of different charge carrier density, that have not been observed in devices based on top- or split-gates. The solution of the corresponding quantum scattering problem is presented to substantiate these results, and possible follow-up experiments are discussed.Comment: 10 pages, 12 figure

    Optimizing Dirac fermions quasi-confinement by potential smoothness engineering

    Full text link
    With the advent of high mobility encapsulated graphene devices, new electronic components ruled by Dirac fermions optics have been envisioned and realized. The main building blocks of electron-optics devices are gate-defined p-n junctions, which guide, transmit and refract graphene charge carriers, just like prisms and lenses in optics. The reflection and transmission are governed by the p-n junction smoothness, a parameter difficult to tune in conventional devices. Here we create p-n junctions in graphene, using the polarized tip of a scanning gate microscope, yielding Fabry-P\'erot interference fringes in the device resistance. We control the p-n junctions smoothness using the tip-to-graphene distance, and show increased interference contrast using smoother potential barriers. Extensive tight-binding simulation reveal that smooth potential barriers induce a pronounced quasi-confinement of Dirac fermions below the tip, yielding enhanced interference contrast. On the opposite, sharp barriers are excellent Dirac fermions transmitters and lead to poorly contrasted interferences. Our work emphasizes the importance of junction smoothness for relativistic electron optics devices engineering

    Probing miniband structure and Hofstadter butterfly in gated graphene superlattices via magnetotransport

    No full text
    Abstract The presence of periodic modulation in graphene leads to a reconstruction of the band structure and formation of minibands. In an external uniform magnetic field, a fractal energy spectrum called Hofstadter butterfly is formed. Particularly interesting in this regard are superlattices with tunable modulation strength, such as electrostatically induced ones in graphene. We perform quantum transport modeling in gate-induced square two-dimensional superlattice in graphene and investigate the relation to the details of the band structure. At low magnetic field the dynamics of carriers reflects the semi-classical orbits which depend on the mini band structure. We theoretically model transverse magnetic focusing, a ballistic transport technique by means of which we investigate the minibands, their extent and carrier type. We find a good agreement between the focusing spectra and the mini band structures obtained from the continuum model, proving usefulness of this technique. At high magnetic field the calculated four-probe resistance fit the Hofstadter butterfly spectrum obtained for our superlattice. Our quantum transport modeling provides an insight into the mini band structures, and can be applied to other superlattice geometries
    corecore