62 research outputs found

    Cell-autonomous and environmental contributions to the interstitial migration of T cells

    Get PDF
    A key to understanding the functioning of the immune system is to define the mechanisms that facilitate directed lymphocyte migration to and within tissues. The recent development of improved imaging technologies, most prominently multi-photon microscopy, has enabled the dynamic visualization of immune cells in real-time directly within intact tissues. Intravital imaging approaches have revealed high spontaneous migratory activity of T cells in secondary lymphoid organs and inflamed tissues. Experimental evidence points towards both environmental and cell-intrinsic cues involved in the regulation of lymphocyte motility in the interstitial space. Based on these data, several conceptually distinct models have been proposed in order to explain the coordination of lymphocyte migration both at the single cell and population level. These range from “stochastic” models, where chance is the major driving force, to “deterministic” models, where the architecture of the microenvironment dictates the migratory trajectory of cells. In this review, we focus on recent advances in understanding naïve and effector T cell migration in vivo. In addition, we discuss some of the contradictory experimental findings in the context of theoretical models of migrating leukocytes

    Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis

    Get PDF
    Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB

    Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes

    Get PDF
    T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities

    A Near-Infrared Cell Tracker Reagent for Multiscopic In Vivo Imaging and Quantification of Leukocyte Immune Responses

    Get PDF
    The complexity of the tumor microenvironment necessitates that cell behavior is studied in a broad, multi-scale context. Although tomographic and microscopy-based far and near infrared fluorescence (NIRF, >650 nm) imaging methods offer high resolution, sensitivity, and depth penetration, there has been a lack of optimized NIRF agents to label and track cells in their native environments at different scales. In this study we labeled mammalian leukocytes with VivoTag 680 (VT680), an amine reactive N-hydroxysuccinimide (NHS) ester of a (benz) indolium-derived far red fluorescent probe. We show that VT680 diffuses into leukocytes within minutes, covalently binds to cellular components, remains internalized for days in vitro and in vivo, and does not transfer fluorescence to adjacent cells. It is biocompatible, keeps cells fully functional, and fluoresces at high intensities. In a tumor model of cytotoxic T lymphocyte (CTL) immunotherapy, we track and quantify VT680-labeled cells longitudinally at the whole-body level with fluorescence-mediated molecular tomography (FMT), within tissues at single cell resolutions by multiphoton and confocal intravital microscopy, and ex vivo by flow cytometry. Thus, this approach is suitable to monitor cells at multiple resolutions in real time in their native environments by NIR-based fluorescence imaging

    Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites

    Get PDF
    Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Gαi protein-coupled receptor–dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens

    Dynamic Imaging of CD8+ T Cells and Dendritic Cells during Infection with Toxoplasma gondii

    Get PDF
    To better understand the initiation of CD8+ T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs) and parasite specific CD8+ T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8+ T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8+ T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8+ T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis

    Solid Tumor-Targeted Infiltrating Cytotoxic T Lymphocytes Retained by a Superantigen Fusion Protein

    Get PDF
    Successful immune-mediated regression of solid tumors is difficult because of the small number of cytotoxic T lymphocytes (CTLs) that were traffic to the tumor site. Here, the targeting of tumor-specific infiltrating CTLs was dependent on a fusion protein consisting of human epidermal growth factor (EGF) and staphylococcal enterotoxin A (SEA) with the D227A mutation. EGF-SEA strongly restrained the growth of murine solid sarcoma 180 (S180) tumors (control versus EGF-SEA, mean tumor weight: 1.013 versus 0.197 g, difference  = 0.816 g). In mice treated with EGF-SEA, CD4+, CD8+ and SEA-reactive T lymphocytes were enriched around the EGFR expressing tumor cells. The EGF receptors were potentially phosphorylated by EGF-SEA stimulation and the fusion protein promoted T cells to release the tumoricidal cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Intratumoral CTLs secreted cytolytic pore-forming perforins and granzyme B proteins near the surface of carcinomas, causing the death of many tumor cells. We additionally show that labeled EGF-SEA was directly targeted to the tumor tissue after intravenous (i.v.) injection. The findings demonstrate that antibody-like EGF-SEA plays an important role in arresting CTLs in the solid tumor site and has therapeutic potential as a tumor-targeting agent

    Detection of Intra-Tumor Self Antigen Recognition during Melanoma Tumor Progression in Mice Using Advanced Multimode Confocal/Two Photon Microscope

    Get PDF
    Determining how tumor immunity is regulated requires understanding the extent to which the anti-tumor immune response “functions” in vivo without therapeutic intervention. To better understand this question, we developed advanced multimodal reflectance confocal/two photon fluorescence intra-vital imaging techniques to use in combination with traditional ex vivo analysis of tumor specific T cells. By transferring small numbers of melanoma-specific CD8+ T cells (Pmel-1), in an attempt to mimic physiologic conditions, we found that B16 tumor growth alone was sufficient to induce naive Pmel-1 T cell proliferation and acquisition of effector phenotype. Tumor -primed Pmel-1 T cells, are capable of killing target cells in the periphery and secrete IFNγ, but are unable to mediate tumor regression. Within the tumor, Pmel-1 T cells have highly confined mobility, displaying long term interactions with tumor cells. In contrast, adoptively transferred non tumor-specific OT-I T cells show neither confined mobility, nor long term interaction with B16 tumor cells, suggesting that intra-tumor recognition of cognate self antigen by Pmel-1 T cells occurs during tumor growth. Together, these data indicate that lack of anti-tumor efficacy is not solely due to ignorance of self antigen in the tumor microenvironment but rather to active immunosuppressive influences preventing a protective immune response

    Imaging Immune Surveillance of Individual Natural Killer Cells Confined in Microwell Arrays

    Get PDF
    New markers are constantly emerging that identify smaller and smaller subpopulations of immune cells. However, there is a growing awareness that even within very small populations, there is a marked functional heterogeneity and that measurements at the population level only gives an average estimate of the behaviour of that pool of cells. New techniques to analyze single immune cells over time are needed to overcome this limitation. For that purpose, we have designed and evaluated microwell array systems made from two materials, polydimethylsiloxane (PDMS) and silicon, for high-resolution imaging of individual natural killer (NK) cell responses. Both materials were suitable for short-term studies (<4 hours) but only silicon wells allowed long-term studies (several days). Time-lapse imaging of NK cell cytotoxicity in these microwell arrays revealed that roughly 30% of the target cells died much more rapidly than the rest upon NK cell encounter. This unexpected heterogeneity may reflect either separate mechanisms of killing or different killing efficiency by individual NK cells. Furthermore, we show that high-resolution imaging of inhibitory synapse formation, defined by clustering of MHC class I at the interface between NK and target cells, is possible in these microwells. We conclude that live cell imaging of NK-target cell interactions in multi-well microstructures are possible. The technique enables novel types of assays and allow data collection at a level of resolution not previously obtained. Furthermore, due to the large number of wells that can be simultaneously imaged, new statistical information is obtained that will lead to a better understanding of the function and regulation of the immune system at the single cell level

    Two-photon microscopy analysis of leukocyte trafficking and motility

    Get PDF
    During the last several years, live tissue imaging, in particular using two-photon laser microscopy, has advanced our understanding of leukocyte trafficking mechanisms. Studies using this technique are revealing distinct molecular requirements for leukocyte migration in different tissue environments. Also emerging from the studies are the ingenious infrastructures for leukocyte trafficking, which are produced by stromal cells. This review summarizes the recent imaging studies that provided novel mechanistic insights into in vivo leukocyte migration essential for immunosurveillance
    corecore