200 research outputs found

    Paired associative stimulation targeting the tibialis anterior muscle using either mono or biphasic transcranial magnetic stimulation

    Get PDF
    Paired associative stimulation (PAS) protocols induce plastic changes within the motor cortex. The objectives of this study were to investigate PAS effects targeting the tibialis anterior (TA) muscle using a biphasic transcranial magnetic stimulation (TMS) pulse form and, to determine whether a reduced intensity of this pulse would lead to significant changes as has been reported for hand muscles using a monophasic TMS pulse. Three interventions were investigated: (1) suprathreshold PAbi-PAS (n = 11); (2) suprathreshold PAmono-PAS (n = 11) where PAS was applied using a biphasic or monophasic pulse form at 120% resting motor threshold (RMT); (3) subthreshold PAbi-PAS (n = 10) where PAS was applied as for (1) at 95% active motor threshold (AMT). The peak-to-peak motor evoked potentials (MEPs) were quantified prior to, immediately following, and 30 min after the cessation of the intervention. TA MEP size increased significantly for all interventions immediately post (61% for suprathreshold PAbi-PAS, 83% for suprathreshold PAmono-PAS, 55% for subthreshold PAbi-PAS) and 30 min after the cessation of the intervention (123% for suprathreshold PAbi-PAS, 105% for suprathreshold PAmono-PAS, 80% for subthreshold PAbi-PAS. PAS using a biphasic pulse form at subthreshold intensities induces similar effects to conventional PAS

    Short-interval intracortical inhibition and facilitation targeting upper and lower limb muscles

    Get PDF
    Abstract Transcranial magnetic stimulation (TMS) can be used to study excitability of corticospinal neurons in human motor cortex. It is currently not fully elucidated if corticospinal neurons in the hand vs. leg representation show the same or different regulation of their excitability by GABAAergic and glutamatergic interneuronal circuitry. Using a paired-pulse TMS protocol we tested short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF) in 18 healthy participants. Motor evoked potentials were evoked in one hand (abductor digiti minimi) and one leg muscle (tibialis anterior), with systematic variation of the intensities of the first (S1) and second (S2) pulse between 60 and 140% resting motor threshold (RMT) in 10% steps, at two interstimulus intervals of 1.5 and 2.1 ms. For the hand and leg motor representations and for both interstimulus intervals, SICI occurred if the intensities of S1  RMT, while SICF predominated if S1 = S2 ≤ RMT, or S1 > RMT and S2 < RMT. Findings confirm and extend previous evidence that the regulation of excitability of corticospinal neurons of the hand versus leg representation in human primary cortex through GABAAergic and glutamatergic interneuronal circuits is highly similar, and that corticospinal neurons of both representations are activated by TMS transsynaptically in largely identical ways

    Decoding covert somatosensory attention by a BCI system calibrated with tactile sensation

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Objective: We propose a novel calibration strategy to facilitate the decoding of covert somatosensory attention by exploring the oscillatory dynamics induced by tactile sensation. Methods: It was hypothesized that the similarity of the oscillatory pattern between stimulation sensation (SS, real sensation) and somatosensory attentional orientation (SAO) provides a way to decode covert somatic attention. Subjects were instructed to sense the tactile stimulation, which was applied to the left (SS-L) or the right (SS-R) wrist. The BCI system was calibrated with the sensation data and then applied for online SAO decoding. Results: Both SS and SAO showed oscillatory activation concentrated on the contralateral somatosensory hemisphere. Offline analysis showed that the proposed calibration method led to greater accuracy than the traditional calibration method based on SAO only. This is confirmed by online experiments, where the online accuracy on 15 subjects was 78.8±13.1%, with 12 subjects >70% and 4 subject >90%. Conclusion: By integrating the stimulus-induced oscillatory dynamics from sensory cortex, covert somatosensory attention can be reliably decoded by a BCI system calibrated with tactile sensation. Significance: Indeed, real tactile sensation is more consistent during calibration than SAO. This brain-computer interfacing approach may find application for stroke and completely locked-in patients with preserved somatic sensation.University Starter Grant of the University of Waterloo (No. 203859) National Natural Science Foundation of China (Grant No. 51620105002
    • …
    corecore