7 research outputs found

    Using Atomic Force Microscopy to Probe Microalgal Response

    Get PDF

    "Kicking Up Some Dust": An Experimental Investigation Relating Lunar Dust Erosive Wear to Solar Power Loss

    Get PDF
    The exhaust from retrograde rockets fired by spacecraft landing on the Moon can accelerate lunar dust particles to high velocities. Information obtained from NASA's Apollo 12 mission confirmed that these high-speed dust particles can erode nearby structures. This erosive wear damage can affect the performance of optical components such as solar concentrators. Solar concentrators are objects which collect sunlight over large areas and focus the light into smaller areas for purposes such as heating and energy production. In this work, laboratory-scale solar concentrators were constructed and subjected to erosive wear by the JSC-1AF lunar dust simulant. The concentrators were focused on a photovoltaic cell and the degradation in electrical power due to the erosive wear was measured. It was observed that even moderate exposure to erosive wear from lunar dust simulant resulted in a 40 percent reduction in power production from the solar concentrators

    Erosive Wear Characterization of Materials for Lunar Construction

    Get PDF
    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface

    Understanding the Mechanical Properties of Microalgae Using Atomic Force Microscopy

    Get PDF
    Abstract From consumer productions to energy production, algae is used in many industrial processes. Understanding the mechanical behavior of algae is important to optimize these processes. To obtain a better understanding of algae cell response, we mechanically characterized single, dried Scenedesmus dimorphus cells. To accomplish this, we used atomic force microscopy (AFM) to image S. dimorphus cells, which enabled us to map the AFM measurements to a location on the individual cells. We were then able to perform force measurements on the AFM to determine the Young's modulus of S. dimorphus. These findings enable a more detailed understanding of the mechanical properties of a single S. dimorphus cell, which may be useful in many applications

    Communications Biophysics

    Get PDF
    Contains reports on five research projects.National Institutes of Health (Grant 5 P01 GM14940-03)National Institutes of Health (Grant 5 TOl GM01555-03)National Aeronautics and Space Administration (Grant NGL 22-009-304
    corecore