38 research outputs found

    Concerns regarding SARS-CoV-2 JN.1 mutations should be raised

    Get PDF
    JN.1 is a new variant of SARS-CoV-2 which is a subvariant of Omicron (BA.2.86) was first discovered in the USA in September 2023. The virus’s capacity to spread and elude the immune system may be impacted by a single alteration in the spike protein, which serves as its distinguishing feature. JN.1 has been classified as an interesting variety by the World Health Organisation. JN.1 might lead to a rise in infections, or its possible influence on public health is yet premature. Current immunisations, examinations, and therapies are still anticipated to combat JN.1

    Combat against antibiotic resistance is a challenge in Bangladesh

    Get PDF
    To the Editor, Antibiotics are a class of drug used to treat or prevent infections caused by bacteria; they function by either eradicating the organism or stopping its growth. Penicillin, cephalosporins, macrolides, fluoroquinolones, and urinary anti-infectives are examples of common antibiotics. To effectively treat the illness, it's critical to take antibiotics as directed by a physician and to finish the entire course of treatment. Antibiotic resistance is a serious issue in Bangladesh as a result of subpar healthcare practices, antibiotic abuse, and overuse. Antibiotic resistance is the result of bacteria changing and becoming resistant to an antibiotic's effects. Moreover, one of Bangladesh's biggest challenges is the fight against antibiotic resistance. Therefore, the purpose of this letter is to raise awareness of the antibiotic resistance in Bangladesh

    Record dengue deaths in Bangladesh as disease patterns change

    Get PDF
    The worst dengue outbreak to ever strike Bangladesh was in 2023, caused by the DENV-2 strain. The Directorate General of Health Service (DGHS) estimated case fatality rate of 0.53 % in 2023 based on a total of 32,1179 laboratory-confirmed cases and 17,05 associated fatalities. The outbreak has spread to all eight divisions of the nation and displayed unique seasonality as well as an early, dramatic rise in case count, peaking in late June. Along with regional diversity in the epidemic loads, the outbreak has also shown differences in morbidity and death associated with age and gender. The government has stepped up its anti-dengue campaign in response to the crisis, including initiatives to increase public awareness and manage the mosquito population

    Gas chromatography mass spectrometry couple with quadrupole time-of-flight (GC-QTOF MS) as a powerful tool for profiling of oxygenated sesquiterpenes in agarwood oil

    Get PDF
    Agarwood (Aquilaria malaccensis) is very well known as the most expensive wood in the world due to its wide applications in perfumery, cosmetic traditional medicine, and religious ceremonies. The study aimed to give an in-depth characterisation focusing on marker compounds in A. malaccensis from different places in Malaysia. The establishment of an oxygenated sesquiterpenes chemical profile of the fungus-infected agarwood oil was achieved by gas chromatography mass spectrometry (GC–MS) coupled with quadrupole time (QTOF) technique. Aroma compounds were identified as sesquiterpenes and oxygenated sesquiterpenes where agarospirol was found in samples of all locations (3.12%, 3.54%, 3.36% and 2.26% from Melaka, Pahang, Kelantan A and Kelantan B respectively) and also N-hexadecanoic acid as one of the major compounds. Both compounds were further isolated by Prep-GC and confirmed by NMR. This study provides a reference for agarwood oil analysis from different origins in Malaysia

    In-silico design of curcumin analogs as potential inhibitors of dengue virus NS2B/NS3 protease

    Get PDF
    Curcumin can interact with a variety of molecules implicated in a wide range of disorders. It can also hinder dengue virus’s (DENV’s) ability to infect cells. This work used computational analysis to identify and forecast the most potent curcumin analogs against the DENV NS2B/NS3 protease. In this study, curcumin-like compounds were screened using a rational in-silico study, with the least similarity score, docking analysis, and then additional screening for suitable pharmacokinetic properties. According to the findings, DB11672 has been identified as the primary inhibitor of DENV NS2B/NS3 protease. It is recommended that additional research be done on this antiviral property of the lead compound as a part of the process of finding and developing a new drug against DENV

    Molecular docking and in silico evaluation of phytochemicals of bioactive methanolic extract of Ipomoea mauritiana Jacq. as anti-bacterial agents

    Get PDF
    Antibacterial treatment has grown difficult due to the increasing growth in bacterial infections, as well as their tolerance to most first-line antibiotics. This is a severe danger to the world’s human health in the 21st century, necessitating further research to identify drugs with improved antibacterial effects and broad-spectrum functions. This study aimed to discover anti-bacterial agents through the molecular docking and in silico approach. Most responsive thirty (32) compounds on UPLC-Q-TOF/MS analysis were selected from our previous report to get the hit compound(s) against inhibition of cell wall synthesis, inhibition of protein synthesis, interference with nucleic acid synthesis, inhibition of a metabolic pathway, inhibition of membrane function and inhibition of adenosine triphosphate (ATP) synthase. From the molecular docking results, we afforded six compounds for cell wall synthesis protein, four compounds for protein synthesis protein, five for nucleic acid synthesis protein, three for metabolic pathway protein, four for membrane function protein and three for ATP synthase protein which eventually undergoes the pharmacokinetic and drug-likeness properties to obtain lead compound(s). Finally, we discovered that compounds Turpinionosides B, Polydatin, Ledebouriellol, and Pterodontoside A have the strongest binding interactions with cell wall synthesis, inhibition of protein synthesis and inhibition of metabolic pathway synthesis, interference with nucleic acid synthesis and inhibition of ATP synthase, inhibition of membrane function proteins, respectively. These compounds have the potential to become an anti-bacterial therapeutic candidate due to their promising pharmacological properties

    Exploring the potential of biologically active phenolic acids from marine natural products as anticancer agents targeting the epidermal growth factor receptor

    Get PDF
    The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results

    Computer-aided anti-cancer drug discovery of EGFR protein based on virtual screening of drug bank, ADMET, docking, DFT and molecular dynamic simulation studies

    Get PDF
    Numerous malignancies, including breast cancer, non-small cell lung cancer, and chronic myeloid leukemia, are brought on by aberrant tyrosine kinase signaling. Since the current chemotherapeutic medicines are toxic, there is a great need and demand from cancer patients to find novel chemicals that are toxic-free or have low toxicity and that can kill tumor cells and stop their growth. This work describes the in-silico examination of substances from the drug bank as EGFR inhibitors. Firstly, drug-bank was screened using the pharmacophore technique to select the ligands and Erlotinib (DB00530) was used as matrix compound. The selected ligands were screened using ADMET and the hit compounds were subjected to docking. The lead compound from the docking was subjected to DFT and MD simulation study. Using the pharmacophore technique, 23 compounds were found through virtual drug bank screening. One hit molecule from the ADMET prediction was the subject of docking study. According to the findings, DB03365 molecule fits to the EGFR active site by several hydrogen bonding interactions with amino acids. Furthermore, DFT analysis revealed high reactivity for DB03365 compound in the binding pocket of the target protein, based on ELUMO, EHOMO and band energy gap. Furthermore, MD simulations for 100 ns revealed that the ligand interactions with the residues of EGFR protein were part of the essential residues for structural stability and functionality. However, DB03365 was a promising lead molecule that outperformed the reference compound in terms of performance and in-vitro and in-vivo experiments needs to validate the study

    Pharmacophore-based molecular docking and in-silico study of novel usnic acid derivatives as avian influenza A (H7N9) inhibitor

    Get PDF
    The Avian Influenza virus is not only dangerous to birds, but it is also dangerous to people and other animals. It is a serious danger to poultry worldwide with the capacity to spread to other species, including people; consequently, more efficient medicines are required to treat this virus. This study examined the binding effectiveness of twentyone (21) Usnic acid derivatives out of 340 generated via pharmacophore filtering with AIV A (H7N9) utilising an in-silico technique. The docking simulation to AIV A obtained five compounds with a high affinity to the target protein. The ADMET and druggability prediction produced two lead molecules that were then submitted to Cytochrome (CYP) P450 enzyme screening to generate the best molecule, labelled as compound 5. According to the findings, compound 5 might be employed as a lead inhibitor in developing an anti-AIV medicatio

    Pharmacophore-based molecular docking of usnic acid derivatives to discover anti-viral drugs against influenza A virus

    Get PDF
    For decades, influenza virus infection has been a serious health concern due to seasonal epidemics and pandemics, and it is continuing on the rise today, yet there is no gold-standard medication available for treating influenza viral infection. As a result, better influenza medicine is necessary to prevent illness. The purpose of this work was to investigate how effective usnic acid derivatives were as antiviral medications against the influenza virus in a computational approach. To discover the prospective medication as an anti-influenza agent, we employed pharmacophore-based molecular docking, ADMET, and drug-likeness studies, CYP isoform analysis and MD simulation approaches. Using pharmacophore filtering processes, twenty-three (23) usnic acid derivatives were acquired from an in-house database of 340 usnic acid derivatives. A docking simulation on the Influenza A H1N1 polymerase resulted in four molecules with a high affinity for the protein. The pharmacokinetics and drug-likeness predictions yielded two hit compounds, which were then subjected to cytochrome P450 enzyme screening to provide the lead molecule, denoted as compound-4. In addition, MD simulation of lead compound (Compound-4) was performed to verify the stability of the docked complex and the binding posture acquired in docking experiments. The findings revealed that compound-4 is a promising option for antiviral treatment of influenza illness in the future
    corecore