4 research outputs found

    One-step in vitro generation of ETV2-null pig embryos

    Get PDF
    Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor ETV2 via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine ETV2 gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs

    The role of exosomes on colorectal cancer: A review.

    No full text
    Exosomes are extracellular microvesicles released from cells, which are involved in many biological and pathological processes, mainly because of their role in intercellular communication. Exosomes derived from colorectal cancer (CRC) cells are related to oncogenesis, tumor cell survival, chemo-resistance, and metastasis. The role of the exosomes in these processes involves the transfer of proteins, RNAs, or mutant versions of proto-oncogenes to the target cells. In recent years, great efforts have been made to identify useful biomarkers in CRC exosomes for diagnosis, prediction of prognosis, and treatment response. This review focuses on recent studies on CRC exosomes, considering isolation, cargo, biomarkers, and the effects of exosomes on the development and progression of CRC, including resistance to antitumor therapy

    Revealing cell populations catching the early stages of human embryo development in naive pluripotent stem cell cultures

    No full text
    Naive human pluripotent stem cells (hPSCs) are defined as the in vitro counterpart of the human preimplantation embryo's epiblast and are used as a model system to study developmental processes. In this study, we report the discovery and characterization of distinct cell populations coexisting with epiblast-like cells in 5iLAF naive human induced PSC (hiPSC) cultures. It is noteworthy that these populations closely resemble different cell types of the human embryo at early developmental stages. While epiblast-like cells represent the main cell population, interestingly we detect a cell population with gene and transposable element expression profile closely resembling the totipotent eight-cell (8C)-stage human embryo, and three cell populations analogous to trophectoderm cells at different stages of their maturation process: transition, early, and mature stages. Moreover, we reveal the presence of cells resembling primitive endoderm. Thus, 5iLAF naive hiPSC cultures provide an excellent opportunity to model the earliest events of human embryogenesis, from the 8C stage to the peri-implantation period
    corecore