13 research outputs found

    Differential effects of extreme drought on production and respiration: synthesis and modeling analysis

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.5194/bg-11-621-2014, 2014.Extremes in climate may severely impact ecosystem structure and function, with both the magnitude and rate of response differing among ecosystem types and processes. We conducted a modeling analysis of the effects of extreme drought on two key ecosystem processes, production and respiration, and, to provide a broader context, we complemented this with a synthesis of published results that cover a wide variety of ecosystems. The synthesis indicated that across a broad range of biomes, gross primary production (GPP) was generally more sensitive to extreme drought (defined as proportional reduction relative to average rainfall periods) than was ecosystem respiration (ER). Furthermore, this differential sensitivity between production and respiration increased as drought severity increased; it occurred only in grassland ecosystems, and not in evergreen needle-leaf and broad-leaf forests or woody savannahs. The modeling analysis was designed to enable a better understanding of the mechanisms underlying this pattern, and focused on four grassland sites arrayed across the Great Plains, USA. Model results consistently showed that net primary productivity (NPP) was reduced more than heterotrophic respiration (Rh) by extreme drought (i.e., 67% reduction in annual ambient rainfall) at all four study sites. The sensitivity of NPP to drought was directly attributable to rainfall amount, whereas the sensitivity of Rh to drought was driven by soil drying, reduced carbon (C) input and a drought-induced reduction in soil C content – a much slower process. However, differences in reductions in NPP and Rh diminished as extreme drought continued, due to a gradual decline in the soil C pool leading to further reductions in Rh. We also varied the way in which drought was imposed in the modeling analysis; it was either imposed by simulating reductions in rainfall event size (ESR) or by reducing rainfall event number (REN). Modeled NPP and Rh decreased more by ESR than REN at the two relatively mesic sites but less so at the two xeric sites. Our findings suggest that responses of production and respiration differ in magnitude, occur on different timescales, and are affected by different mechanisms under extreme, prolonged drought

    Influence of metals and metalloids on the composition and fluorescence quenching of the extracellular polymeric substances produced by the polymorphic fungus <i>Aureobasidium pullulans</i>

    Get PDF
    Aureobasidium pullulansis a ubiquitous and widely distributed fungus in the environment, and exhibits substantial tolerance against toxic metals. However, the interactions between metals and metalloids with the copious extracellular polymeric substances (EPS) produced byA. pullulansand possible relationships to tolerance are not well understood. In this study, it was found that mercury (Hg) and selenium (Se), as selenite, not only significantly inhibited growth ofA. pullulansbut also affected the composition of produced EPS. Lead (Pb) showed little influence on EPS yield or composition. The interactions of EPS fromA. pullulanswith the tested metals and metalloids depended on the specific element and their concentration. Fluorescence intensity measurements of the EPS showed that the presence of metal(loid)s stimulated the production of extracellular tryptophan-like and aromatic protein-like substances. Examination of fluorescence quenching and calculation of binding constants revealed that the fluorescence quenching process for Hg; arsenic (As), as arsenite; and Pb to EPS were mainly governed by static quenching which resulted in the formation of a stable non-fluorescent complexes between the EPS and metal(loid)s. Se showed no significant interaction with the EPS according to fluorescence quenching. These results provide further understanding of the interactions between metals and metalloids and EPS produced by fungi and their contribution to metal(loid) tolerance
    corecore