24 research outputs found

    An Italian Multicenter Perspective Harmonization Trial for the Assessment of MET Exon 14 Skipping Mutations in Standard Reference Samples

    Get PDF
    Lung cancer remains the leading cause of cancer deaths worldwide. International societies have promoted the molecular analysis of MET proto-oncogene, receptor tyrosine kinase (MET) exon 14 skipping for the clinical stratification of non-small cell lung cancer (NSCLC) patients. Different technical approaches are available to detect MET exon 14 skipping in routine practice. Here, the technical performance and reproducibility of testing strategies for MET exon 14 skipping carried out in various centers were evaluated. In this retrospective study, each institution received a set (n = 10) of a customized artificial formalin-fixed paraffin-embedded (FFPE) cell line (Custom METex14 skipping FFPE block) that harbored the MET exon 14 skipping mutation (Seracare Life Sciences, Milford, MA, USA), which was previously validated by the Predictive Molecular Pathology Laboratory at the University of Naples Federico II. Each participating institution managed the reference slides according to their internal routine workflow. MET exon 14 skipping was successfully detected by all participating institutions. Molecular analysis highlighted a median Cq cut off of 29.3 (ranging from 27.1 to 30.7) and 2514 (ranging from 160 to 7526) read counts for real-time polymerase chain reaction (RT-PCR) and NGS-based analyses, respectively. Artificial reference slides were a valid tool to harmonize technical workflows in the evaluation of MET exon 14 skipping molecular alterations in routine practice

    EGFR, KRAS, BRAF, and PIK3CA characterization in squamous cell anal cancer

    No full text
    Background: Combined chemoradiation therapy is the gold standard in the treatment of squamous cell anal cancer (SCAC). However, even if the response rate is very high, many patients eventually relapse or experience a recurrence, thus requiring an invasive surgical procedure that has severe side effects. Most SCAC tumors overexpress epidermal growth factor receptor (EGFR); therefore, it is reasonable to consider anti-EGFR drugs as a new treatment option, as demonstrated by anecdotal reports. Promising results obtained in other solid tumors, both squamous and non-squamous, have revealed that an increase in the EGFR gene copy number may predict the efficacy of anti-EGFR therapies, while the presence of mutations in downstream members of the EGFR pathway may confer resistance. These markers have been only sporadically considered in SCAC. Methods: We investigated the status of the EGFR gene using FISH and examined KRAS, BRAF, and PIK3CA hot-spots mutations using sequencing analysis in a cohort of 84 patients affected by SCAC. Results: Twenty-eight patients (34%) showed an increase in EGFR gene copy number due to amplification (4%) or to polysomy (30%). KRAS and PIK3CA gene mutations were found in 4 (5%) and 13 patients (16%), respectively. No mutations were found in the BRAF gene. Conclusions: The characterization of the EGFR pathway may help in identifying different subgroups of SCAC that have specific molecular features, which may have implications in what targeted therapies are used to treat each patient. Histol Histopathol 29, 513-521 (2014

    An Italian Multicenter Perspective Harmonization Trial for the Assessment of MET Exon 14 Skipping Mutations in Standard Reference Samples

    No full text
    Lung cancer remains the leading cause of cancer deaths worldwide. International societies have promoted the molecular analysis of MET proto-oncogene, receptor tyrosine kinase (MET) exon 14 skipping for the clinical stratification of non-small cell lung cancer (NSCLC) patients. Different technical approaches are available to detect MET exon 14 skipping in routine practice. Here, the technical performance and reproducibility of testing strategies for MET exon 14 skipping carried out in various centers were evaluated. In this retrospective study, each institution received a set (n = 10) of a customized artificial formalin-fixed paraffin-embedded (FFPE) cell line (Custom METex14 skipping FFPE block) that harbored the MET exon 14 skipping mutation (Seracare Life Sciences, Milford, MA, USA), which was previously validated by the Predictive Molecular Pathology Laboratory at the University of Naples Federico II. Each participating institution managed the reference slides according to their internal routine workflow. MET exon 14 skipping was successfully detected by all participating institutions. Molecular analysis highlighted a median Cq cut off of 29.3 (ranging from 27.1 to 30.7) and 2514 (ranging from 160 to 7526) read counts for real-time polymerase chain reaction (RT-PCR) and NGS-based analyses, respectively. Artificial reference slides were a valid tool to harmonize technical workflows in the evaluation of MET exon 14 skipping molecular alterations in routine practice

    S13 Table -

    No full text
    In recent years, immune checkpoint inhibitors have proved immense clinical progression in the treatment of certain cancers. The efficacy of immune checkpoint inhibitors is correlated with mismatch repair system deficiency and is exceptionally administered based exclusively on this biological mechanism independent of the cancer type. The promising effect of immune checkpoint inhibitors has left an increasing demand for analytical tools evaluating the mismatch repair status. The analysis of microsatellite instability (MSI), reflecting an indirect but objective manner the inactivation of the mismatch repair system, plays several roles in clinical practice and, therefore, its evaluation is of high relevance. Analysis of MSI by PCR followed by fragment analysis on capillary electrophoresis remains the gold standard method for detection of a deficient mismatch repair system and thereby treatment with immune checkpoint inhibitors. Novel technologies have been applied and concepts such as tumor mutation burden have been introduced. However, to date, most of these technologies require high costs or the need of matched non-tumor tissue as internal comparator. In this study, we present a novel, one-instrument, fast, and objective method for the detection of MSI (MicroSight® MSI 1-step HRM Analysis), which does not depend on the use of matched non-tumor tissue. The assay analyzes five well-described mononucleotide microsatellite sequences by real-time PCR followed by high-resolution melt and evaluates microsatellite length variations via PCR product melting profiles. The assay was evaluated using two different patient cohorts and evaluation included several DNA extraction methodologies, two different PCR platforms, and an inter-laboratory ring study. The MicroSight® MSI assay showed a high repeatability regardless of DNA extraction method and PCR platform, and a 100% agreement of the MSI status with PCR fragment analysis methods applied as clinical comparator.</div

    Principle of MicroSight® MSI analysis using universal reference.

    No full text
    Four stable and four unstable tumor samples were analyzed using a universal reference for NR24 locus. Applying a temperature shift makes it possible to differentiate unstable from stable samples naturally differing in lengths. A) Normalized HRM curves without temperature shift. B) Difference plot without temperature shift. Threshold was set at -0.04 RFU. C) Normalized HRM curves with temperature shift at 0.1 RFU. D) Difference plot with temperature shift at 0.1 RFU. Threshold was set at -0.04 RFU. MSI: microsatellite instability; HRM: high resolution melt; RFU: relative fluorescence unit.</p
    corecore