49 research outputs found

    Deqi sensations without cutaneous sensory input: results of an RCT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deqi is defined in relation to acupuncture needling as a sensory perception of varying character. In a recently published sham laser validation study, we found that subjects in the verum and the sham laser group experienced deqi sensations. Therefore, we aim to further analyze whether the perceptions reported in the two study arms were distinguishable and whether expectancy effects exhibited considerable impact on our results.</p> <p>Methods</p> <p>A detailed re-analysis focusing on deqi sensations was performed from data collected in a previously published placebo-controlled, double-blind, clinical cross-over trial for a sham laser evaluation. Thirty-four healthy volunteers (28 ± 10.7 years; 16 women, 18 men) received two laser acupuncture treatments at three acupuncture points LI4 (hégu), LU7 (liéque), and LR3 (táichong); once by verum laser and once using a sham device containing an inactive laser in randomized order. Outcome measures were frequency, intensity (evaluated by visual analogue scale; VAS), and quality of the subjects' sensations perceived during treatments (assessed with the "acupuncture sensation scale").</p> <p>Results</p> <p>Both, verum and the sham laser acupuncture result in similar deqi sensations with regard to frequency (p-value = 0.67), intensity (p-value = 0.71) and quality (p-values between 0.15 - 0.98). In both groups the most frequently used adjectives to describe these perceptions were "spreading", "radiating", "tingling", "tugging", "pulsing", "warm", "dull", and "electric". Sensations reported were consistent with the perception of deqi as previously defined in literature. Subjects' conviction regarding the effectiveness of laser acupuncture or the history of having received acupuncture treatments before did not correlate with the frequency or intensity of sensations reported.</p> <p>Conclusions</p> <p>Since deqi sensations, described as sensory perceptions, were elicited without any cutaneous sensory input, we assume that they are a product of non-specific effects from the overall treatment procedure. Expectancy-effects due to previous acupuncture experience and belief in laser acupuncture do not seem to play a major role in elicitation of deqi sensations. Our results give hints that deqi might be a central phenomenon of awareness and consciousness, and that its relevance should be taken into account, even in clinical trials. However, further research is required to understand mechanisms underlying deqi.</p

    Biofield Therapies: Helpful or Full of Hype? A Best Evidence Synthesis

    Get PDF
    Biofield therapies (such as Reiki, therapeutic touch, and healing touch) are complementary medicine modalities that remain controversial and are utilized by a significant number of patients, with little information regarding their efficacy. This systematic review examines 66 clinical studies with a variety of biofield therapies in different patient populations. We conducted a quality assessment as well as a best evidence synthesis approach to examine evidence for biofield therapies in relevant outcomes for different clinical populations. Studies overall are of medium quality, and generally meet minimum standards for validity of inferences. Biofield therapies show strong evidence for reducing pain intensity in pain populations, and moderate evidence for reducing pain intensity hospitalized and cancer populations. There is moderate evidence for decreasing negative behavioral symptoms in dementia and moderate evidence for decreasing anxiety for hospitalized populations. There is equivocal evidence for biofield therapies' effects on fatigue and quality of life for cancer patients, as well as for comprehensive pain outcomes and affect in pain patients, and for decreasing anxiety in cardiovascular patients. There is a need for further high-quality studies in this area. Implications and future research directions are discussed

    Computer Analysis -Warping of Cantilever

    No full text

    Structural Earthquake Response Analysis

    No full text
    AbstractEarthquakes are one of the most dangerous natural phenomena causing damage to buildings and other structures as well as injury and death of people. These destructive processes can never be prevented to happen, but their impact on the structures can be minimized. Structures with improved earthquake resistance can be designed using optimization techniques together with realistic modelling of the structure, the soil-structure interaction and the earthquake excitation. The present research work consists of structural earthquake response analysis and design using developed tools based on the finite element method together with global and local optimization techniques and stochastic simulation methods.The developed tools have been tested on different types of 3D structures subjected to earthquake excitation. The objective has been to reduce vibrations either for the whole structure or for a selected part, such as a vibration-sensitive room. Optimized design variables are: structural dimensions and soil-structure interaction parameters (Paper A), optimal numbers, locations and parameters of viscoelastic passive dampers (Paper B), optimal parameters and location of viscoelastic passive dampers between adjacent structures (Paper D). Further, since earthquake excitations have random properties, stochastic linear and nonlinear response of a large structure (Paper C) has been evaluated using finite element and stochastic simulation methods (Paper E). The results of this thesis indicate that structures subjected to earthquakes can be efficiently designed against earthquakes by integration of finite element, optimization and stochastic simulation methods
    corecore