35 research outputs found

    Evolving spiking networks with variable resistive memories

    Get PDF
    Neuromorphic computing is a brainlike information processing paradigm that requires adaptive learning mechanisms. A spiking neuro-evolutionary system is used for this purpose; plastic resistive memories are implemented as synapses in spiking neural networks. The evolutionary design process exploits parameter self-adaptation and allows the topology and synaptic weights to be evolved for each network in an autonomous manner. Variable resistive memories are the focus of this research; each synapse has its own conductance profile which modifies the plastic behaviour of the device and may be altered during evolution. These variable resistive networks are evaluated on a noisy robotic dynamic-reward scenario against two static resistive memories and a system containing standard connections only. The results indicate that the extra behavioural degrees of freedom available to the networks incorporating variable resistive memories enable them to outperform the comparative synapse types. © 2014 by the Massachusetts Institute of Technology

    The Problem of Patent Thickets in Convergent Technologies

    Full text link
    Patent thickets are unintentionally dense webs of overlapping intellectual property rights owned by different companies that can retard progress. This article begins with a review of existing research on patent thickets, focusing in particular on the problem of patent thickets in nanotechnology, or nanothickets. After presenting visual evidence of the presence of nanothickets using a network analytic technique, it discusses potential organizational responses to patent thickets. It then reviews the existing research on patent pools and discusses pool formation in the shadow of antitrust enforcement. Based on recent research on patent pool formation, it examines the divergent fate of two recent pools and discusses the prospects for the future formation of nanotechnology patent pools, or nanopools.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72678/1/annals.1382.014.pd

    Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve

    Get PDF
    Comprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada
    corecore