1,467 research outputs found

    Science granting councils in Sub-Saharan Africa : final technical report

    Get PDF

    Joint-Angle Coordination Patterns Ensure Stabilization of a Body-Plus-Tool System in Point-to-Point Movements with a Rod

    Get PDF
    When performing a goal-directed action with a tool, it is generally assumed that the point of control of the action system is displaced from the hand to the tool, implying that body and tool function as one system. Studies of how actions with tools are performed have been limited to studying either end-effector kinematics or joint-angle coordination patterns. Because joint-angle coordination patterns affect end-effector kinematics, the current study examined them together, with the aim of revealing how body and tool function as one system. Seated participants made point-to-point movements with their index finger, and with rods of 10, 20, and 30 cm attached to their index finger. Start point and target were presented on a table in front of them, and in half of the conditions a participant displacement compensated for rod length. Results revealed that the kinematics of the rod’s tip showed higher peak velocity, longer deceleration time, and more curvature with longer rods. End-effector movements were more curved in the horizontal plane when participants were not displaced. Joint-angle trajectories were similar across rod lengths when participants were displaced, whereas more extreme joint-angles were used with longer rods when participants were not displaced. Furthermore, in every condition the end-effector was stabilized to a similar extent; both variability in joint-angle coordination patterns that affected end-effector position and variability that did not affect end-effector position increased in a similar way vis-à-vis rod length. Moreover, the increase was higher in those conditions, in which participants were not displaced. This suggests that during tool use, body and tool are united in a single system so as to stabilize the end-effector kinematics in a similar way that is independent of tool length. In addition, the properties of the actual trajectory of the end-effector, as well as the actual joint-angles used, depend on the length of the tool and the specifics of the task

    A FRET-based method for monitoring structural transitions in protein self-organization

    Get PDF
    Proteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states. Intermolecular FRET with both the donor and acceptor proteins at the same target protein provides high sensitivity while retaining the advantage of straightforward ratiometric imaging. We apply this method to monitor self-assembly of three proteins. We show that the mutant Huntingtin exon1 (mHttex1) first forms less-ordered assemblies, which develop into fibril-like aggregates, and demonstrate that the chaperone protein DNAJB6b increases the critical saturation concentration of mHttex1. We also monitor the structural changes in fused in sarcoma (FUS) condensates. This method adds to the toolbox for protein self-assembly structure and kinetics determination, and implementation with native or non-native proteins can inform studies involving protein condensation or aggregation

    Anaerobic ammonium oxidation in the old trickling filters at Daspoort Wastewater Treatment Works

    Get PDF
    The century-old trickling filters at the Daspoort Wastewater Treatment Works in Pretoria (Gauteng, South Africa) are known for their remarkable removal of nitrogen from municipal wastewater. Our study was conducted to identify the microbiological processes responsible for this phenomenon and to establish whether anammox bacteria may be involved. An aerobic and anaerobic bench top reactor, both inoculated with biofilm-covered stones from one of the filters, were spiked with ammonia-nitrogen  (NH4+-N) and nitrite-nitrogen (NO2.-N). These reactors were subsequently monitored by conducting stoichiometric analyses of chemical oxygen demand (COD), NH4+-N, NO2.-N, and nitrate-nitrogen (NO3.-N). In the aerobic reactor, the COD concentration decreased over the 56 h batch reaction period and nitrification was revealed by a decrease in NH4+-N and NO2.-N concentrations. However, the NO3.-N concentration showed no  notable decrease. In contrast, in the anaerobic reactor the concentrations of COD, NH4+-N, NO2¡¥-N, NO3¡¥-N, as well as total nitrogen decreased during the batch reaction period. The decrease of both the NH4+-N and NO2.-N concentrations, the latter to zero under anaerobic conditions,   suggested that, in addition to heterotrophic denitrification, anaerobic ammonium oxidation (anammox) may also occur in the trickling filter biofilm. This was highlighted by the observation that ammonium removal in the anaerobic reactor stopped as soon as the nitrite concentration  became zero. The ratio of nitrite:ammonium removal was 1.33 on  average, which conforms to anammox behaviour. Gene sequence analysis was used to test for the possible presence of anammox bacteria in the  trickling filter biofilm. Genomic DNA was extracted from trickling filter  humus sludge and the polymerase chain reaction (PCR) was used to  amplify taxonomically informative 16S rRNA gene sequences, using  primers specific for selected anammox species. Subsequent sequence analysis, including using the online Basic Local Alignment Search Tool (BLAST), and constructing a phylogenic tree using a heuristic search  strategy for Maximum Parsimony analysis, confirmed the presence of an anammox bacterium closely related to Candidatus ¡®Brocadia  anammoxidans¡¯ and Candidatus ¡®Brocadia fulgida¡¯ on the biofilm-covered stones of the Daspoort trickling filters.Keywords: Daspoort, trickling filter, anammox, nitrification, denitrification, stoichiometric analyses, polymerase chain reactio

    A laser triggered electron source for pulsed radiolysis

    Get PDF
    We present the design of a photo-injector based accelerator for pulsed radiolysis applications. This machine is destined to meet the needs of the physical chemistry community at the Universite de Paris XI. A 4 MeV Energy electron pulse of a few picoseconds duration and with a charge in the range of 1 to 10 nC is produced from a Cs/sub 2 /Te photocathode. The photocathode is placed in the half energy spread cell of a 1-1/2 cell, 3 GHz RF gun, whose design is based on the gun used for the drive beam of the CERN CLIC Test facility. A 4 cell "booster" cavity is then used to accelerate the beam to an energy of 9 MeV. The transport system consists of a quadrupole triplet downsteam of the booster, two rectangular, 30 degree bend, dipoles with a pair of quadrupoles between them and a second triplet downstream of the second dipole. Energy dependent path length effects in the two dipoles allow the possibility of magnetic bunch compression depending on the phase-energy correlation of the bunch exiting the booster cavity. The beam envelope and the bunch length have been calculated through the transport line using TRACE-3d and PARMELA. These codes allow us to verify the required beam parameters at the experimental areas. We discuss the adjustment of the optics, aimed at producing the minimum electron bunch length at the experimental targets. (4 refs)
    corecore