83 research outputs found

    Neural correlates of maladaptive pain behavior in chronic neck pain - a single case control fMRI study

    Get PDF
    Chronic neck pain patients display functional impairments like decreased range of motion, decreased strength, and reduced sensorimotor function. In patients without structural damage, the reason for the persistence of pain is not well understood. Therefore, it is assumed that in chronic pain states, memory processes play an important role. We have now detected and tested a patient that might help us to better understand the neural correlates of maladaptive pain expectation/memory. This patient displays chronic neck pain and restricted unilateral motion of the cervical spine to the left. However, when the patient is distracted, she can perform head rotations without experiencing pain and without restricting her range of movement. Based on this observation, we asked her to imagine movements shown in a video: conscious, non- distracted head rotations (pain-provoking) versus distracted head rotations (pain-free) and compared these results with an age and gender matched control volunteer. Functional magnetic resonance imaging (fMRI) showed distinct brain activation patterns that depended on the side of rotation (pain-free versus painful side) and the kind of movement (distracted versus non-distracted head rotation). Interestingly, brain areas related to the processing of pain such as primary somatosensory cortex, thalamus, insula, anterior cingulate cortex, primary motor cortex, supplementary motor area, prefrontal cortex, and posterior cingulate cortex were always more strongly activated in the non-distracted condition and when turning to the left. The age and gender matched control volunteer displayed no comparable activation of pain centers. In the patient, maladaptive pain behavior and the activity of pain-related brain areas during imagined head rotations were task-specific, indicating that the activation and/or recall of pain memories were context-dependent. These findings are important not only to improve the understanding of the neural organization of maladaptive pain behavior but also to reconsider clinical evaluation and treatment strategies. The current results therefore suggest that treatment strategies have to take into account and exploit the context in which the movement is performed

    Age-related differences in cortical and subcortical activities during observation and motor imagery of dynamic postural tasks: an FMRI study

    Get PDF
    Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations

    Behavioral and neural adaptations in response to five weeks of balance training in older adults: a randomized controlled trial

    Get PDF
    Background: While the positive effect of balance training on age-related impairments in postural stability is well-documented, the neural correlates of such training adaptations in older adults remain poorly understood. This study therefore aimed to shed more light on neural adaptations in response to balance training in older adults.Methods: Postural stability as well as spinal reflex and cortical excitability was measured in older adults (65–80 years) before and after 5 weeks of balance training (n = 15) or habitual activity (n = 13). Postural stability was assessed during one- and two-legged quiet standing on a force plate (static task) and a free-swinging platform (dynamic task). The total sway path was calculated for all tasks. Additionally, the number of errors was counted for the one-legged tasks. To investigate changes in spinal reflex excitability, the H-reflex was assessed in the soleus muscle during quiet upright stance. Cortical excitability was assessed during an antero-posterior perturbation by conditioning the H-reflex with single-pulse transcranial magnetic stimulation.Results: A significant training effect in favor of the training group was found for the number of errors conducted during one-legged standing (p = .050 for the static and p = .042 for the dynamic task) but not for the sway parameters in any task. In contrast, no significant effect was found for cortical excitability (p = 0.703). For spinal excitability, an effect of session (p < .001) as well as an interaction of session and group (p = .009) was found; however, these effects were mainly due to a reduced excitability in the control group.Conclusions: In line with previous results, older adults’ postural stability was improved after balance training. However, these improvements were not accompanied by significant neural adaptations. Since almost identical studies in young adults found significant behavioral and neural adaptations after four weeks of training, we assume that age has an influence on the time course of such adaptations to balance training and/or the ability to transfer them from a trained to an untrained task

    Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks

    Get PDF
    Non-physical balance training has demonstrated to be efficient to improve postural control in young people. However, little is known about the potential to increase corticospinal excitability by mental simulation in lower leg muscles. Mental simulation of isolated, voluntary contractions of limb muscles increase corticospinal excitability but more automated tasks like walking seem to have no or only minor effects on motor-evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS). This may be related to the way of performing the mental simulation or the task itself. Therefore, the present study aimed to clarify how corticospinal excitability is modulated during AO + MI, MI and action observation (AO) of balance tasks. For this purpose, MEPs and H-reflexes were elicited during three different mental simulations (a) AO + MI, (b) MI and (c) passive AO. For each condition, two balance tasks were evaluated: (1) quiet upright stance (static) and (2) compensating a medio-lateral perturbation while standing on a free-swinging platform (dynamic).AO + MI resulted in the largest facilitation of MEPs followed by MI and passive AO. MEP facilitation was significantly larger in the dynamic perturbation than in the static standing task. Interestingly, passive observation resulted in hardly any facilitation independent of the task. H-reflex amplitudes were not modulated.The current results demonstrate that corticospinal excitability during mental simulation of balance tasks is influenced by both the type of mental simulation and the task difficulty. As H-reflexes and background EMG were not modulated, it may be argued that changes in excitability of the primary motor cortex were responsible for the MEP modulation. From a functional point of view, our findings suggest best training/rehabilitation effects when combining MI with AO during challenging postural tasks

    Mental flexibility depends on a largely distributed white matter network: Causal evidence from connectome-based lesion-symptom mapping.

    Get PDF
    Mental flexibility (MF) refers to the capacity to dynamically switch from one task to another. Current neurocognitive models suggest that since this function requires interactions between multiple remote brain areas, the integrity of the anatomic tracts connecting these brain areas is necessary to maintain performance. We tested this hypothesis by assessing with a connectome-based lesion-symptom mapping approach the effects of white matter lesions on the brain's structural connectome and their association with performance on the trail making test, a neuropsychological test of MF, in a sample of 167 first unilateral stroke patients. We found associations between MF deficits and damage of i) left lateralized fronto-temporo-parietal connections and interhemispheric connections between left temporo-parietal and right parietal areas; ii) left cortico-basal connections; and iii) left cortico-pontine connections. We further identified a relationship between MF and white matter disconnections within cortical areas composing the cognitive control, default mode and attention functional networks. These results for a central role of white matter integrity in MF extend current literature by providing causal evidence for a functional interdependence among the regional cortical and subcortical structures composing the MF network. Our results further emphasize the necessity to consider connectomics in lesion-symptom mapping analyses to establish comprehensive neurocognitive models of high-order cognitive functions

    Proactive inhibition is not modified by deep brain stimulation for Parkinson's disease: An electrical neuroimaging study.

    Get PDF
    In predictable contexts, motor inhibitory control can be deployed before the actual need for response suppression. The brain functional underpinnings of proactive inhibition, and notably the role of basal ganglia, are not entirely identified. We investigated the effects of deep brain stimulation of the subthalamic nucleus or internal globus pallidus on proactive inhibition in patients with Parkinson's disease. They completed a cued go/no-go proactive inhibition task ON and (unilateral) OFF stimulation while EEG was recorded. We found no behavioural effect of either subthalamic nucleus or internal globus pallidus deep brain stimulation on proactive inhibition, despite a general improvement of motor performance with subthalamic nucleus stimulation. In the non-operated and subthalamic nucleus group, we identified periods of topographic EEG modulation by the level of proactive inhibition. In the subthalamic nucleus group, source estimation analysis suggested the initial involvement of bilateral frontal and occipital areas, followed by a right lateralized fronto-basal network, and finally of right premotor and left parietal regions. Our results confirm the overall preservation of proactive inhibition capacities in both subthalamic nucleus and internal globus pallidus deep brain stimulation, and suggest a partly segregated network for proactive inhibition, with a preferential recruitment of the indirect pathway

    Spatial aspects of bodily self-consciousness

    Get PDF
    Visual, somatosensory, and perspectival cues normally provide congruent information about where the self is experienced. Separating those cues by virtual reality techniques, recent studies found that self-location was systematically biased to where a visual-tactile event was seen. Here we developed a novel, repeatable and implicit measure of self-location to compare and extend previous protocols. We investigated illusory self-location and associated phenomenological aspects in a lying body position that facilitates clinically observed abnormal self-location (as on out-of-body experiences). The results confirm that the self is located to where touch is seen. This leads to either predictable lowering or elevation of self-localization, and the latter was accompanied by sensations of floating, as during out-of-body experiences. Using a novel measurement we show that the unitary and localized character of the self can be experimentally separated from both the origin of the visual perspective and the location of the seen body, which is compatible with clinical data

    The role of the cognitive control system in recovery from bilingual aphasia: a multiple single-case fMRI study

    Get PDF
    Aphasia in bilingual patients is a therapeutic challenge since both languages can be impacted by the same lesion. Language control has been suggested to play an important role in the recovery of first (L1) and second (L2) language in bilingual aphasia following stroke. To test this hypothesis, we collected behavioral measures of language production (general aphasia evaluation and picture naming) in each language and language control (linguistic and nonlinguistic switching tasks), as well as fMRI during a naming task at one and four months following stroke in five bilingual patients suffering from poststroke aphasia. We further applied dynamic causal modelling (DCM) analyses to the connections between language and control brain areas. Three patients showed parallel recovery in language production, one patient improved in L1, and one improved in L2 only. Language-control functions improved in two patients. Consistent with the dynamic view of language recovery, DCM analyses showed a higher connectedness between language and control areas in the language with the better recovery. Moreover, similar degrees of connectedness between language and control areas were found in the patients who recovered in both languages. Our data suggest that engagement of the interconnected language-control network is crucial in the recovery of languages

    Sustained enhancements in inhibitory control depend primarily on the reinforcement of fronto-basal anatomical connectivity

    Get PDF
    What are the neurophysiological determinants of sustained supra-normal inhibitory control performance? We addressed this question by coupling multimodal neuroimaging and behavioral investigations of experts in fencing who underwent more than 20,000 h of inhibitory control training over 15 years. The superior control of the experts manifested behaviorally as a speeding-up of inhibition processes during a Go/NoGo task and was accompanied by changes in bilateral inferior frontal white matter microstructure. In the expert group, inhibition performance correlated positively with the fractional anisotropy (FA) of white matter tracts projecting to the basal ganglia, and the total training load with the FA in supplementary motor areas. Critically, the experts showed no changes in grey matter volume or in the functional organization of the fronto-basal inhibitory control network. The fencers’ performance and neural activity during a 2-back working memory task did not differ from those of the controls, ensuring that their expertise was specific to inhibitory control. Our results indicate that while phasic changes in the patterns of neural activity and grey matter architecture accompany inhibitory control improvement after short- to medium- term training, long- lasting inhibitory control improvements primarily depend on the reinforcement of fronto- basal structural connectivity
    • 

    corecore