3 research outputs found

    Profiling of Phytochemicals in Tissues from Sclerocarya birrea by HPLC-MS and Their Link with Antioxidant Activity

    Get PDF
    peer-reviewedHigh performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed to investigate the differences in phytochemicals in roots, bark, and leaf of Sclerocarya birrea (marula) for methanol and water extracts that exhibited the best antioxidant activities. As many as 36 compounds were observed in the extracts of these tissues of which 27 phenolic compounds were tentatively identified. The HPLC-MS/MS results showed flavonoid glycosides were prominent in leaf extracts while the galloylated tannins were largely in bark and root extracts. Four flavonoid glycosides that were reported for the first time in the marula leaf have been identified. The HPLC-MS/MS studies also illustrated different degrees (highest degree = 3) of oligomerisation and galloylation of tannins in the bark and root extracts

    Antioxidant and Proapoptotic Activities of Sclerocarya birrea [(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2

    Get PDF
    The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death
    corecore