20 research outputs found

    Methodology for integrated socio-economic assessment of offshore platforms : towards facilitation of the implementation of the marine strategy framework directive

    Get PDF
    In this paper a Methodology for Integrated Socio-Economic Assessment (MISEA) of the viability and sustainability of different designs of Multi-Use Offshore Platforms (MUOPs) is presented. MUOPs are designed for multi-use of ocean space for energy extraction (wind power production and wave energy), aquaculture and transport maritime services. The developed methodology allows identification, valuation and assessment of: the potential range of impacts of a number of feasible designs of MUOP investments, and the likely responses of those impacted by the investment project. This methodology provides decision-makers with a valuable decision tool to assess whether a MUOP project increases the overall social welfare and hence should be undertaken, under alternative specifications regarding its design, the discount rate and the stream of net benefits, if a Cost-Benefit Analysis (CBA) is to be followed or sensitivity analysis of selected criteria in a Multi-Criteria Decision Analysis (MCDA) framework. Such a methodology is also crucial for facilitating of the implementation of the Marine Strategy Framework Directive (MSFD adopted in June 2008) that aims to achieve good environmental status of the EU's marine waters by 2020 and to protect the resource base upon which marine-related economic and social activities depend. According to the MSFD each member state must draw up a program of cost-effective measures, while prior to any new measure an impact assessment which contains a detailed cost-benefit analysis of the proposed measures is required

    Methodology for Integrated Socio-economic Assessment of Multi-use Offshore Platforms.

    No full text
    This chapter presents the methodology employed for the Integrated Socio-Economic Assessment (MISEA) of different designs of Multi-Use Offshore Platforms (MUOPs). The methodology allows for the identification, the valuationand the assessment of the potential impacts and their magnitude. The analysis considers a number of feasible designs of MUOP investments, and the likely responsesof those impacted by the investment project. The approach provides decision-makers with a valuable tool to assess whether a MUOP project increases the overall social welfare and hence should be undertaken. This is performed under alternative specifications regarding platform design, the discount rate and the stream of net benefits, if a Cost-Benefit Analysis (CBA) is to be followed or a sensitivity analysis of selected criteria in a Multi-Criteria Decision Analysis (MCDA) framework. Themethodology can support the implementation of policies aiming at achieving a goodenvironmental status of the EU’s marine waters and the protection of the resource base upon which marine-related economic and social activities depend

    Methodology for Integrated Socio-economic Assessment of Multi-use Offshore Platforms

    No full text
    This chapter presents the methodology employed for the Integrated Socio-Economic Assessment (MISEA) of different designs of Multi-Use Offshore Platforms (MUOPs). The methodology allows for the identification, the valuation and the assessment of the potential impacts and their magnitude. The analysis considers a number of feasible designs of MUOP investments, and the likely responses of those impacted by the investment project. The approach provides decision-makers with a valuable tool to assess whether a MUOP project increases the overall social welfare and hence should be undertaken. This is performed under alternative specifications regarding platform design, the discount rate and the stream of net benefits, if a Cost-Benefit Analysis (CBA) is to be followed or a sensitivity analysis of selected criteria in a Multi-Criteria Decision Analysis (MCDA) framework. The methodology can support the implementation of policies aiming at achieving a good environmental status of the EU’s marine waters and the protection of the resource base upon which marine-related economic and social activities depend

    Schematic representations in arithmetical problem solving: Analysis of their impact on grade 4 students

    Full text link
    While the value of ‘schematic representations’ in problem solving requires no further demonstration, the way in which students should be taught how to construct these representations invariably gives rise to various debates. This study, conducted on 146 grade 4 students in Luxembourg, analyzes the effect of two types of ‘schematic representation’ (diagrams vs. schematic drawings) on the solving of arithmetical problems. The results show that the presence of schematic representations has a clear positive effect on overall student performance and that a non negligible proportion of students manage to reuse the representations encountered in order to solve new problems. While showing an effect slightly in favor of diagrams as opposed to schematic drawings, our results do not really permit us to draw any conclusions about the form that these representations should take, in particular since a differential effect was observed depending on the type of problem
    corecore