32 research outputs found

    Observational Constraints on the Ages of Molecular Clouds and the Star-Formation Timescale: Ambipolar-Diffusion--Controlled or Turbulence-Induced Star Formation?

    Full text link
    We revisit the problem of the star formation timescale and the ages of molecular clouds. The apparent overabundance of star-forming molecular clouds over clouds without active star formation has been thought to indicate that molecular clouds are "short-lived" and that star formation is "rapid". We show that this statistical argument lacks self-consistency and, even within the rapid star-formation scenario, implies cloud lifetimes of approximately 10 Myr. We discuss additional observational evidence from external galaxies that indicate lifetimes of molecular clouds and a timescale of star formation of approximately 10 Myr . These long cloud lifetimes in conjunction with the rapid (approximately 1 Myr) decay of supersonic turbulence present severe difficulties for the scenario of turbulence-controlled star formation. By contrast, we show that all 31 existing observations of objects for which the linewidth, the size, and the magnetic field strength have been reliably measured are in excellent quantitative agreement with the predictions of the ambipolar-diffusion theory. Within the ambipolar-diffusion-controlled star formation theory the linewidths may be attributed to large-scale non-radial cloud oscillations (essentially standing large-amplitude, long-wavelength Alfven waves), and the predicted relation between the linewidth, the size, and the magnetic field is a natural consequence of magnetic support of self-gravitating clouds.Comment: 7 pages, 2 figures, uses emulateapj; accepted for publication in Ap

    The Effect of the Random Magnetic Field Component on the Parker Instability

    Get PDF
    The Parker instability is considered to play important roles in the evolution of the interstellar medium. Most studies on the development of the instability so far have been based on an initial equilibrium system with a uniform magnetic field. However, the Galactic magnetic field possesses a random component in addition to the mean uniform component, with comparable strength of the two components. Parker and Jokipii have recently suggested that the random component can suppress the growth of small wavelength perturbations. Here, we extend their analysis by including gas pressure which was ignored in their work, and study the stabilizing effect of the random component in the interstellar gas with finite pressure. Following Parker and Jokipii, the magnetic field is modeled as a mean azimuthal component, B(z)B(z), plus a random radial component, Ï”(z)B(z)\epsilon(z) B(z), where Ï”(z)\epsilon(z) is a random function of height from the equatorial plane. We show that for the observationally suggested values of 1/2^{1/2}, the tension due to the random component becomes important, so that the growth of the instability is either significantly reduced or completely suppressed. When the instability still works, the radial wavenumber of the most unstable mode is found to be zero. That is, the instability is reduced to be effectively two-dimensional. We discuss briefly the implications of our finding.Comment: 10 pages including 2 figures, to appear in The Astrophysical Journal Letter

    Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment: I. Formulation of the Problem and Method of Solution

    Get PDF
    We formulate the problem of the formation of magnetically supercritical cores in magnetically subcritical parent molecular clouds, and the subsequent collapse of the cores to high densities, past the detachment of ions from magnetic field lines and into the opaque regime. We employ the six-fluid MHD equations, accounting for the effects of grains (negative, positive and neutral) including their inelastic collisions with other species. We do not assume that the magnetic flux is frozen in any of the charged species. We derive a generalized Ohm's law that explicitly distinguishes between flux advection (and the associated process of ambipolar diffusion) and Ohmic dissipation, in order to assess the contribution of each mechanism to the increase of the mass-to-flux ratio of the central parts of a collapsing core and possibly to the resolution of the magnetic flux problem of star formation. We show how our formulation is related to and can be transformed into the traditional, directional formulation of the generalized Ohm's law, and we derive formulae for the perpendicular, parallel and Hall conductivities entering the latter, which include, for the first time, the effect of inelastic collisions between grains. In addition, we present a general (valid in any geometry) solution for the velocities of charged species as functions of the velocity of the neutrals and of the effective flux velocity (which can in turn be calculated from the dynamics of the system and Faraday's law). The last two sets of formulae can be adapted for use in any general non-ideal MHD code to study phenomena beyond star formation in magnetic clouds. The results, including a detailed parameter study, are presented in two accompanying papers.Comment: 17 pages, emulateapj; accepted for publication in the Astrophysical Journa

    Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity

    Get PDF
    Using an isothermal MHD code, we have performed three-dimensional, high-resolution simulations of the Parker instability. The initial equilibrium system is composed of exponentially-decreasing isothermal gas and magnetic field (along the azimuthal direction) under a uniform gravity. The evolution of the instability can be divided into three phases: linear, nonlinear, and relaxed. During the linear phase, the perturbations grow exponentially with a preferred scale along the azimuthal direction but with smallest possible scale along the radial direction, as predicted from linear analyses. During the nonlinear phase, the growth of the instability is saturated and flow motion becomes chaotic. Magnetic reconnection occurs, which allows gas to cross field lines. This, in turn, results in the redistribution of gas and magnetic field. The system approaches a new equilibrium in the relaxed phase, which is different from the one seen in two-dimensional works. The structures formed during the evolution are sheet-like or filamentary, whose shortest dimension is radial. Their maximum density enhancement factor relative to the initial value is less than 2. Since the radial dimension is too small and the density enhancement is too low, it is difficult to regard the Parker instability alone as a viable mechanism for the formation of giant molecular clouds.Comment: 8 pages of text, 4 figures (figure 2 in degraded gif format), to appear in The Astrophysical Journal Letters, original quality figures available via anonymous ftp at ftp://ftp.msi.umn.edu/pub/users/twj/parker3d.uu or ftp://canopus.chungnam.ac.kr/ryu/parker3d.u

    A Comparative Study of the Parker Instability under Three Models of the Galactic Gravity

    Get PDF
    To examine how non-uniform nature of the Galactic gravity might affect length and time scales of the Parker instability, we took three models of gravity, uniform, linear and realistic ones. To make comparisons of the three gravity models on a common basis, we first fixed the ratio of magnetic pressure to gas pressure at α\alpha = 0.25, that of cosmic-ray pressure at ÎČ\beta = 0.4, and the rms velocity of interstellar clouds at asa_s = 6.4 km s−1^{-1}, and then adjusted parameters of the gravity models in such a way that the resulting density scale heights for the three models may all have the same value of 160 pc. Performing linear stability analyses onto equilibrium states under the three models with the typical ISM conditions, we calculate the maximum growth rate and corresponding length scale for each of the gravity models. Under the uniform gravity the Parker instability has the growth time of 1.2×108\times10^{8} years and the length scale of 1.6 kpc for symmetric mode. Under the realistic gravity it grows in 1.8×107\times10^{7} years for both symmetric and antisymmetric modes, and develops density condensations at intervals of 400 pc for the symmetric mode and 200 pc for the antisymmetric one. A simple change of the gravity model has thus reduced the growth time by almost an order of magnitude and its length scale by factors of four to eight. These results suggest that an onset of the Parker instability in the ISM may not necessarily be confined to the regions of high α\alpha and ÎČ\beta.Comment: Accepted for publication in ApJ, using aaspp4.sty, 18 text pages with 9 figure

    Parker Instability in a Self-Gravitating Magnetized Gas Disk: I. Linear Stability Analysis

    Full text link
    To be a formation mechanism of such large-scale structures as giant molecular clouds (GMCs) and HI superclouds, the classical Parker instability driven by external gravity has to overcome three major obstacles: The convective motion accompanying the instability generates thin sheets than large condensations. The degree of density enhancement achieved by the instability is too low to make dense interstellar clouds. The time and the length scales of the instability are significantly longer and larger than the estimated formation time and the observed mean separation of the GMCs, respectively. This paper examines whether a replacement of the driving agent from the external to the self gravity might remove these obstacles by activating the gravitational instability in the Galactic ISM disk. The self gravity can suppress the convective motions, and a cooperative action of the Jeans and the Parker instabilities can remove all the obstacles confronting the classical version of the Parker instability. The mass and mean separation of the structures resulting from the odd-parity undular mode solution are shown to agree better with the HI superclouds than with the GMCs. We briefly discuss how inclusions of the external gravity and cosmic rays would modify behaviors of the odd-parity undular mode solution.Comment: 53 pages, 21 figure

    Do Lognormal Column-Density Distributions in Molecular Clouds Imply Supersonic Turbulence?

    Full text link
    Recent observations of column densities in molecular clouds find lognormal distributions with power-law high-density tails. These results are often interpreted as indications that supersonic turbulence dominates the dynamics of the observed clouds. We calculate and present the column-density distributions of three clouds, modeled with very different techniques, none of which is dominated by supersonic turbulence. The first star-forming cloud is simulated using smoothed particle hydrodynamics (SPH); in this case gravity, opposed only by thermal-pressure forces, drives the evolution. The second cloud is magnetically subcritical with subsonic turbulence, simulated using nonideal MHD; in this case the evolution is due to gravitationally-driven ambipolar diffusion. The third cloud is isothermal, self-gravitating, and has a smooth density distribution analytically approximated with a uniform inner region and an r^-2 profile at larger radii. We show that in all three cases the column-density distributions are lognormal. Power-law tails develop only at late times (or, in the case of the smooth analytic profile, for strongly centrally concentrated configurations), when gravity dominates all opposing forces. It therefore follows that lognormal column-density distributions are generic features of diverse model clouds, and should not be interpreted as being a consequence of supersonic turbulence.Comment: 6 pages, 6 figures, accepted for publication in MNRA

    Three-dimensional simulations of the Parker instability in a uniformly rotating disk

    Get PDF
    We investigate the effects of rotation on the evolution of the Parker instability by carrying out three-dimensional numerical simulations with an isothermal magnetohydrodynamic code. These simulations extend our previous work on the nonlinear evolution of the Parker instability by J. Kim and coworkers. The initial equilibrium system is composed of exponentially stratified gas and a field (along the azimuthal direction) in a uniform gravity (along the downward vertical direction). The computational box, placed at the solar neighborhood, is set to rotate uniformly around the Galactic center with a constant angular speed. The instability has been initialized by random velocity perturbations. In the linear stage, the evolution is not much different from that without rotation, and the mixed (undular + interchange) mode regulates the system. The interchange mode induces alternating dense and rarefied regions with small radial wavelengths, while the undular mode bends the magnetic field lines in the plane of the azimuthal and vertical directions. In the nonlinear stage, flow motion overall becomes chaotic, as in the case without rotation. However, as the gas in higher positions slides down along field lines forming supersonic flows, the Coriolis force becomes important. As oppositely directed flows fall into valleys along both sides of the magnetic field lines, they experience the Coriolis force toward opposite directions, which twists the magnetic field lines there. Hence, we suggest that the Coriolis force plays a role in randomizing the magnetic field. The three-dimensional density structure formed by the instability is still sheetlike with the short dimension along the radial direction, as in the case without rotation. However, the long dimension is now slightly tilted with respect to the mean field direction. The shape of high-density regions is a bit rounder. The maximum enhancement factor of the vertical column density relative to its initial value is about 1.5, which is smaller than that in the case without rotation. We conclude that uniform rotation does not change our point of view that the Parker instability alone is not a viable mechanism for the formation of giant molecular cloudsopen252
    corecore