590 research outputs found

    Vortex tubes in velocity fields of laboratory isotropic turbulence: dependence on the Reynolds number

    Full text link
    The streamwise and transverse velocities are measured simultaneously in isotropic grid turbulence at relatively high Reynolds numbers, Re(lambda) = 110-330. Using a conditional averaging technique, we extract typical intermittency patterns, which are consistent with velocity profiles of a model for a vortex tube, i.e., Burgers vortex. The radii of the vortex tubes are several of the Kolmogorov length regardless of the Reynolds number. Using the distribution of an interval between successive enhancements of a small-scale velocity increment, we study the spatial distribution of vortex tubes. The vortex tubes tend to cluster together. This tendency is increasingly significant with the Reynolds number. Using statistics of velocity increments, we also study the energetical importance of vortex tubes as a function of the scale. The vortex tubes are important over the background flow at small scales especially below the Taylor microscale. At a fixed scale, the importance is increasingly significant with the Reynolds number.Comment: 8 pages, 3 PS files for 8 figures, to appear in Physical Review

    Dual-camera system for high-speed imaging in particle image velocimetry

    Full text link
    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.Comment: 4 pages, accepted by Journal of Visualization (see http://www.springerlink.com

    Quantifying Suppression of the Cosmological 21-cm Signal due to Direction Dependent Gain Calibration in Radio Interferometers

    Get PDF
    The 21-cm signal of neutral hydrogen - emitted during the Epoch of Reionization - promises to be an important source of information for the study of the infant universe. However, its detection is impossible without sufficient mitigation of other strong signals in the data, which requires an accurate knowledge of the instrument. Using the result of instrument calibration, a large part of the contaminating signals are removed and the resulting residual data is further analyzed in order to detect the 21-cm signal. Direction dependent calibration (DDC) can strongly affect the 21-cm signal, however, its effect has not been precisely quantified. In the analysis presented here we show how to exactly calculate what part of the 21-cm signal is removed as a result of the DDC. We also show how a-priori information about the frequency behavior of the instrument can be used to reduce signal suppression. The theoretical results are tested using a realistic simulation based on the LOFAR setup. Our results show that low-order smooth gain functions (e.g. polynomials) over a bandwidth of ~10\,MHz - over which the signal is expected to be stationary - is sufficient to allow for calibration with limited, quantifiable, signal suppression in its power spectrum. We also show mathematically and in simulations that more incomplete sky models lead to larger 21-cm signal suppression, even if the gain models are enforced to be fully smooth. This result has immediate consequences for current and future radio telescopes with non-identical station beams, where DDC might be necessary (e.g. SKA-low).Comment: Submitted to MNRAS on 10-Aug-201

    Statistical mechanics and large-scale velocity fluctuations of turbulence

    Full text link
    Turbulence exhibits significant velocity fluctuations even if the scale is much larger than the scale of the energy supply. Since any spatial correlation is negligible, these large-scale fluctuations have many degrees of freedom and are thereby analogous to thermal fluctuations studied in the statistical mechanics. By using this analogy, we describe the large-scale fluctuations of turbulence in a formalism that has the same mathematical structure as used for canonical ensembles in the statistical mechanics. The formalism yields a universal law for the energy distribution of the fluctuations, which is confirmed with experiments of a variety of turbulent flows. Thus, through the large-scale fluctuations, turbulence is related to the statistical mechanics.Comment: 7 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    Two-point velocity average of turbulence: statistics and their implications

    Full text link
    For turbulence, although the two-point velocity difference u(x+r)-u(x) at each scale r has been studied in detail, the velocity average [u(x+r)+u(x)]/2 has not thus far. Theoretically or experimentally, we find interesting features of the velocity average. It satisfies an exact scale-by-scale energy budget equation. The flatness factor varies with the scale r in a universal manner. These features are not consistent with the existing assumption that the velocity average is independent of r and represents energy-containing large-scale motions alone. We accordingly propose that it represents motions over scales >= r as long as the velocity difference represents motions at the scale r.Comment: 8 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    Probability density function of turbulent velocity fluctuation

    Get PDF
    The probability density function (PDF) of velocity fluctuations is studied experimentally for grid turbulence in a systematical manner. At small distances from the grid, where the turbulence is still developing, the PDF is sub-Gaussian. At intermediate distances, where the turbulence is fully developed, the PDF is Gaussian. At large distances, where the turbulence has decayed, the PDF is hyper-Gaussian. The Fourier transforms of the velocity fluctuations always have Gaussian PDFs. At intermediate distances from the grid, the Fourier transforms are statistically independent of each other. This is the necessary and sufficient condition for Gaussianity of the velocity fluctuations. At small and large distances, the Fourier transforms are dependent.Comment: 7 pages, 8 figures in a PS file, to appear in Physical Review

    Fluctuations of statistics among subregions of a turbulence velocity field

    Full text link
    To study subregions of a turbulence velocity field, a long record of velocity data of grid turbulence is divided into smaller segments. For each segment, we calculate statistics such as the mean rate of energy dissipation and the mean energy at each scale. Their values significantly fluctuate, in lognormal distributions at least as a good approximation. Each segment is not under equilibrium between the mean rate of energy dissipation and the mean rate of energy transfer that determines the mean energy. These two rates still correlate among segments when their length exceeds the correlation length. Also between the mean rate of energy dissipation and the mean total energy, there is a correlation characterized by the Reynolds number for the whole record, implying that the large-scale flow affects each of the segments.Comment: 7 pages, accepted by Physics of Fluids (see http://pof.aip.org/
    • …
    corecore