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ABSTRACT
The 21-cm signal of neutral hydrogen promises to be an important source of information for the
study of the cosmic dawn and epoch of reionization. However, its detection is difficult without
sufficient mitigation of strong contaminating signals in the data, requiring accurate instrument
gain calibration. To detect the 21-cm signal, one analyses the resulting post-calibration residual
data. The 21-cm signal residing in these residuals, however, can be strongly affected by the
process of direction-dependent calibration (DDC) combined with sky-model removal. The
impact of this, in particular on the frequency behaviour of the 21-cm signal, has remained
poorly quantified. In this paper, we derive a new mathematical formalism on how to calculate
the suppression of the 21-cm signal during DDC and sky-model removal. We also show
how a priori information about the frequency behaviour of the instrument, such as spectral
smoothness, can be utilized to reduce signal suppression. The theoretical results are tested
using a realistic simulation based on the LOFAR-EoR calibration set-up. The results show that
if the instrumental gains are intrinsically smooth over several MHz (e.g. polynomials over a
bandwidth of ∼10 MHz), this is sufficient to allow for DDC in as many as ∼100 directions with
limited and quantifiable suppression of the 21-cm signal power spectrum. We also demonstrate
that more incomplete sky models during calibration lead to larger 21-cm signal suppression,
even if the instrumental gain models are fully smooth. This result has immediate consequences
for future radio telescopes with non-identical station beams, where DDC might be necessary
(e.g. SKA-Low).

Key words: instrumentation: interferometers – methods: analytical – dark ages, reionization,
first stars.

1 IN T RO D U C T I O N

Studying the redshifted 21-cm hyperfine transition line of neutral
hydrogen (called the ‘21-cm signal’ hereafter) originated from the
infant Universe is one the most powerful methods for gaining insight
into the evolution of our Universe (see e.g. Furlanetto, Peng Oh &
Briggs 2006b; Morales & Wyithe 2010; Pritchard & Loeb 2012,
for reviews). The signals generated at a radio receiver in response
to these radiations are exteremely weak, and their detection is a
challenging task which requires highly sensitive instruments (e.g.
Furlanetto, Oh & Briggs 2006a; McQuinn et al. 2006; Harker et al.
2010; Parsons et al. 2012; Beardsley et al. 2013; Koopmans et al.
2015; DeBoer et al. 2017). Modern radio telescopes, such as the
LOw Frequency ARray (LOFAR) in the Netherlands, extend over
large distances and combine many receivers to boost both their sen-
sitivity (i.e. collecting area) and angular resolution (see van Haarlem
et al. 2013, for details). However, the signal of interest is not the
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only source of radiation. There are many natural radiators, such as
our own Milky Way and other (radio) galaxies, which also generate
detectable signals at the receivers, often exceeding the 21-cm sig-
nal by many orders of magnitude. Separating these different (partly
polarized) signals is an essential part of the detection process (e.g.
Di Matteo et al. 2002; Oh & Mack 2003; Jelić et al. 2008; Asad et al.
2015; Mertens, Ghosh & Koopmans 2018). During the observation
with a radio telescope, knowledge of the known radio sources, a.k.a.
the ‘sky model’, is often used to estimate the unknown (time and
frequency dependent) parameters of the telescope which can affect
the measurements. This process is called ‘calibration’ and will be
discussed in more details in Section 3. Calibration is an integral
part of the data processing of a radio telescope and has been exten-
sively studied in the context of aperture arrays such as LOFAR (e.g.
Boonstra & van der Veen 2003; Wijnholds & van der Veen 2009;
Kazemi, Yatawatta & Zaroubi 2013; Mouri Sardarabadi & van der
Veen 2014; Smirnov & Tasse 2015; Yatawatta 2015). As the reso-
lution and sensitivity of the instruments increase, more foreground
sources can be detected, and often many of the fainter or more dif-
fuse sources which are not included in the sky model during the
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calibration process. This exclusion of actual sources leads to ‘sky-
or model-incompleteness’ and can result in several artefacts in the
final data (e.g. Grobler et al. 2014, 2016; Barry et al. 2016; Patil
et al. 2016; Wijnholds, Grobler & Smirnov 2016; Ewall-Wice et al.
2017). It is therefore vital to make a distinction between the known
and unknown foreground sources. The 21-cm signal and often also
the extended diffuse Galactic foreground (even if known) are not
part of the sky model either because they are often too faint or too
complicated to be described by a limited set of model parameters.
In our analysis, we are interested in (possible) corruptions of the de-
sired signal, i.e. the weak 21-cm signal in our case, as a result of the
process of calibration. We also study the effect of sky-model incom-
pleteness and the frequency behaviour of the instrument. However,
the mathematical framework introduced in this analysis is not lim-
ited to 21-cm signal studies and can easily be extended to any signal
of interest. Our approach also extends previous analyses to that of
direction-dependent calibration (DDC), which is likely necessary
for instruments for non-identical receiver beams. In Section 2, we
discuss the commonly used signal processing data model or mea-
surement equation and our assumptions. Based on this model we
formulate calibration as a least squares optimization problem in
Section 3 and then proceed to study the effects of such calibration
on the desired signals. In Section 4, we use parameters from the
LOFAR telescope to study the effect of calibration by comparing
the spectra before and after calibration. In Section 5, we draw our
conclusions.

2 THE RADIO TELESCOPE DATA MODEL

Below we describe our assumptions first, followed by the mathe-
matical data model. The following table summarizes the important
quantities used in this and following sections:

P number of receivers (e.g. stations or dishes)
Q number of clusters
K number of frequency channels
T number of snapshots used for single calibration run
N is the number of samples used to generate a single

visibility sample
R̂ is a P × P Hermitian matrix where its element [R̂]i,j

is the visibility for receivers i and j
R is the model/measurement equation for R̂ in the

matrix form
r̂ is the flagged data vector of length TKP2 × 1
r is the flagged model/measurement equation for r̂
gq,k is a P × 1 vector representing the complex gains of the

receivers for cluster q at channel k, with q = 1, . . . , Q
and k = 1, . . . , K .

2.1 Assumptions in the data model

In this analysis, we assume to have access to the sampled output
of P receivers (together called an ‘array’) which are exposed to
electromagnetic radiation from extraterrestrial radio sources. It is
possible for each receiver to be a beam-formed array itself, and the
model presented here is adequate for any general array topology
(see for example the hierarchical structure of the LOFAR telescope;
van Haarlem et al. 2013). As a result of Earth rotation, the apparent
position of the sources changes in time, as does the array for a
reference point on the sky. We assume that the sources are stationary
(i.e. do not change in brightness or structure) during the observation

of N samples of the electromagnetic signal/voltages in time. A single
observation with N samples is denoted as a ‘snapshot’ in time. We
also assume that the output is divided into K frequency channels for
which the narrow-band assumption hold (e.g. Wijnholds & van der
Veen 2009; Mouri Sardarabadi 2016). We used the same sky model
given by Yatawatta (2015) in our numerical simulations, where the
sources in the sky are grouped spatially into so-called ‘clusters’.
During the calibration process, we assume that all sources within a
cluster are affected by the same complex and direction-dependent
gain.1 In this work, we assume that the sky is unpolarized. The
gains can change both in amplitude and phase for example due to
instrumental and also ionospheric effects.

2.2 Mathematical framework

For a single snapshot and frequency channel, we can write the model
for the voltage output of the array as

y[n] =
∑

q

Gqsq [n] + n[n], (1)

where n = 1, . . . , N is the sample index, y[n] is a P × 1 vector
obtained by stacking the output of each receiver, q = 1, . . . , Q is the
cluster index, Gq = diag(gq ) is a P × P diagonal matrix with gq as its
diagonal representing the gains (of all receivers) for the qth cluster,
sq [n] is a P × 1 vector representing the sampled signal from sources
in qth cluster, and n[n] is the total receiver noise contribution to the
output, coming from the system and its electronics. We assume that
the system noise and the signals from each direction are independent
Gaussian random variables with zero mean. The covariance model
for a single snapshot and channel follows from this assumption as

R = E{yyH } =
∑

q

Gq�qGH
q + Rn, (2)

where �q = E{ssH } is the covariance of the signal from qth cluster
(or ‘direction’) and Rn = E{nnH } is the noise covariance matrix.
An entry of the covariance matrix for two receivers is called a (com-
plex) visibility, and the vector connecting two receivers is called a
baseline. There could be many visibility samples for a particular
baseline pair as a function of time and frequency. Due to various
model imperfections, such as the existence of radio frequency inter-
ference near some receivers, it is common to remove some receiver
pairs from the data (e.g. Offringa, Van De Gronde & Roerdink 2012;
Offringa et al. 2013, 2015; Sokolowski, Wayth & Lewis 2016). We
denote by M the symmetric masking matrix which consists of ze-
ros and ones and is used to indicate which pairs are removed. We
also remove entries where Rn is dominant, which for uncorrelated
noise are the diagonal elements, called the autocorrelation (or the
zero-baseline/spacing visibilities). A noisy estimate of the reduced
covariance matrix can be directly obtained from the P × N data ma-
trix collected during a single snapshot observation. This estimate is
called a sample covariance matrix and defined as

R̂ = M � 1

N

N∑
n=1

y[n]y[n]H , (3)

1In reality the gains also vary spatially inside a cluster, but given that the
simulation of the visibilities involves station-beam formation, this automat-
ically generates direction-dependent gain effects in the data inside clusters.
The first-order recovery of the 21-cm signal, as shown later, shows that the
assumption of a constant gain inside a cluster during modelling is therefore
still of second order.
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where � is the Hadamard or element-wise product. Let k = 1, . . . ,
K be the index for each measured frequency channel and t = 1,
. . . , T be the index for each time snapshot, then we denote the
measured sampled covariance matrix (i.e. the visibility data) as R̂t,k

and the corresponding model as Rt,k . We assume that the gains
remain constant during several snapshots based on the instrument
and cluster. In this paper, we take this time to be equal among all
clusters and exactly T snapshots, although this is not necessary. The
gains can also be assumed constant for several adjacent frequency
channels, however this is not used in this analysis and the frequency
behaviour of the gains is treated as a continuous and ‘smooth’
function which we will discuss in the following sections in more
details. The final model for a single channel and frequency is given
by

Rt,k = Mt,k �
∑

q

Gq,k�q,t,kGH
q,k, (4)

for k = 1, . . . , K, t = 1, . . . , T. Note that Rn causes a bias on
the visibilities in the model and it is also a large contributor to the
noise on all sampled visibilities. The contribution of Rn as a bias is
removed by M. During the remainder of this analysis, we use the
vectorized form of these matrices, which are defined as

r =

⎡
⎢⎢⎢⎣

vect(R1,1)
vect(R2,1)

...
vect(RT ,K )

⎤
⎥⎥⎥⎦, r̂ =

⎡
⎢⎢⎢⎣

vect(R̂1,1)
vect(R̂2,1)

...
vect(R̂T ,K )

⎤
⎥⎥⎥⎦.

Based on the model in equation (4), we can now formulate the
calibration problem in the next section.

3 D I R E C T I O N - D E P E N D E N T G A I N
C A L I B R AT I O N

In this section, we introduce the complex gain model for DDC,
starting with the un-regularized least-squares penalty function that
is being optimized to obtain the gain solution. We then introduce
how the data-model solution can be rewritten into a ‘semilinear’
form and how gain regularization can be included in the solutions.
We end this section by describing a data model where part of the
visibility data is not used in the calibration step. The scenarios de-
scribed in Sections 3.1–3.4 cover a large set of calibration methods
which are commonly used. They show how to quantify weak sig-
nal suppression for both regularized and unregularized problems at
convergence (i.e. on a stationary point of the cost function), and
how to find an accurate approximation of the signal suppression if
an unregularized problem is terminated early.

3.1 Least-squares penalty function

Calibration is the process of estimating the complex gains gq,k =
vectdiag(Gq,k) based on the measured data R̂t,k and the known
sky model �q,t,k . As stated, the sky model can be incomplete. The
calibration procedure we address here is a least squares optimization
problem of the form

θ̂ = arg min
θ

f (θ), (5)

where f (θ) = 1
2 ‖r̂ − r(θ)‖2

2 and

θ = [gT
1,1, gH

1,1, gT
2,1, gH

2,1, . . . , gH
Q,KgH

Q,K ]T (6)

is an augmented vector collating all the unknown parameters. An
augmented vector is a vector where a complex variable and its

conjugate are stacked together as two independent variables, and it
is used extensively in signal processing literature (see e.g. Schreier
2010, and references therein). We can also formulate this problem as
a weighted least square optimization similar to Wijnholds & van der
Veen (2009) and Mouri Sardarabadi & van der Veen (2014). For this
analysis, we assume the noise behaviour of the visibility samples to
be identical, which makes such a weighted formulation unnecessary.
Adapting the results to a weighted least squares analysis is trivial.
The problem at hand is non-linear and non-convex and several
iterative approaches have been proposed to solve it (e.g. Boonstra &
van der Veen 2003; Wijnholds & van der Veen 2009; Kazemi et al.
2013; Mouri Sardarabadi & van der Veen 2014; Smirnov & Tasse
2015). In this paper, we do not focus on solving the gains, but discuss
possible physical constraints on the properties of the solution, θ̂ ,
once gain solutions are obtained. However, gains are not the only
product of the calibration problem. The final residual

e ≡ r̂ − r(θ̂ ) (7)

is the target of interest for much scientific research such as the study
of extremely faint cosmological 21-cm signals. It is therefore crucial
to have a good understanding of the properties of e. In this analysis,
we are interested in possible bias in the form of suppression and the
associated baseline-delay (power) spectrum.

3.2 Residuals after least-squares gain calibration

By taking a closer look at the model, we can show (see Appendix A)
that for all θ defined by equation (6), the model, r(θ), satisfies the
following property

r(θ) = 1

2
J(θ)θ, (8)

where J(θ) is the Jacobian matrix, defined by

J(θ) = ∂r(θ)

∂θT
.

We call this property ‘semilinearity’ because it leads to results
that appear very similar to the linear least squares problems, as
we show in this section. The Jacobian itself is linear in θ and
J(θ1)θ2 = J(θ2)θ1. At a solution, θ̂ , the gradient of the cost function
must vanish, leading to

∂f (θ)

∂θ

∣∣∣∣
θ=θ̂

= J(θ̂ )H e(θ̂ ) = 0. (9)

Using the property above we obtain

J(θ̂ )H J(θ̂ )θ̂ = 2J(θ̂ )H r̂,

which except for the factor two on the right-hand side, is a stan-
dard normal equation. Inserting this result back into the residual in
equation (7), we obtain

e(θ̂ ) = [I − J(θ̂ )J(θ̂ )†]r̂ ≡ P(θ̂)⊥r̂, (10)

where ()† is the Moore–Penrose pseudo inverse. For any matrix,
A, the product P = AA† is an orthogonal projection matrix on to
its column space and P⊥ ≡ I − P is the projection matrix for its
null space [for more properties of general inverse of matrices see
e.g. Rohde (1965)]. For a linear problem this projection matrix is
constant while in our semilinear case it is a function of the solutions
at stationary points of f (θ). It is important to note that in contrast to
linearization techniques, where θ̂ is assumed to be sufficiently close
to the (chosen a priori) true solutions, the method presented here
assumes closeness to a critical point of the cost function. While the
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former is unverifiable, because the true solutions are unknown, the
latter can use the norm of the gradient as a verification tool. Hence,
the validity of equation (10) can be verified independently of any
knowledge about the true solutions. Now we can use equation (10)
to study what happens to unmodelled signals in the data. To this
end we extend the model for r̂ with several components that are the
signal of interest (e.g. the 21-cm signal) plus another unmodelled
part of the data (e.g diffuse foregrounds or unmodelled compact
sources). Let the true gain solutions be denoted by θ̃ , then we have

r̂ = r(θ̃ ) + rf (θ̃) + r21(θ̃) + ε,

where rf (θ̃) represents any unmodelled foreground signals, r21(θ̃ )
is the unmodelled 21-cm signal, and ε is the finite sample noise
on the visibilities. Inserting this model into the expression for the
residuals at the solution, we obtain

e(θ̂ ) = P(θ̂ )⊥
[
r(θ̃ ) + rf (θ̃ ) + r21(θ̃ ) + ε

]
. (11)

This result can be interpreted as follows:

(1) The first term P(θ̂ )⊥r(θ̃ ) is the calibration model leakage as
the result of the non-linearity of the problem, noise, and model
incompleteness. We note that the calibration parameters were esti-
mated using an incomplete model of the sky and are therefore often
biased with respect to the truth. This is the main mechanism which
causes power of the sky to ‘leak’ into the residuals (e.g. Barry et al.
2016; Ewall-Wice et al. 2017)

(2) The second term P(θ̂)⊥rf (θ̃) is the remaining unmodelled
foreground signals. There are non-parametric methods that can re-
move this part in post processing (Mertens et al. 2018). However,
the introduced bias on the gain solutions due to this term cannot be
corrected for in post processing.

(3) The third term P(θ̂)⊥r21(θ̃) is what remains of the desired
21-cm signal after the calibration, which makes the suppressed part
of the signal exactly P(θ̂)r21(θ̃ ).

We want to minimize the first two terms while keeping the third
term intact as much as possible. We see that this leads to conflicting
objectives. If we model and include sources in rf (by adding them
to r), we reduce the model incompleteness and the leakage from
the first two terms. However, doing so could increase the degree of
freedom in the model which allows for removing even a larger part
of the desired signal. In other words, it could increase the rank of
the projection matrix, P(θ̂ ), and remove more power from r21. If
based on physical arguments, the solution space can be restricted
further (e.g. via ‘regularization’), then we can also reduce the signal
suppression. There exists a strong physical justification for assum-
ing that the gains are smooth functions of the frequency (van der
Tol, Jeffs & van der Veen 2007), which we will discuss next.

3.3 Enforcing smoothness of the gains

In the following, we assume two scenarios. In both cases, we assume
that the true gain solutions follow smooth functional forms (e.g.
polynomials), where in the first case the higher order (i.e. those
describing the gain fluctuations on smaller frequency scale) terms
are not regularized but forced on to the lower order function, whereas
in the second case they are regularized and allowed to vary around
the lower order function.

3.3.1 Gain smoothness via basis-function constraints

We consider enforcing smoothness of the gains utilizing a set of
parametric smoothing basis functions. Note that doing so is only

acceptable if the instrument itself shows such behaviour (e.g. an
instrument with smooth band-pass). Let the vector λ be a K × 1
vector with the central frequency of each channel as its elements.
Then we denote by �(λ) a K × M unitary basis for the set of sampled
smooth functions. For example, for a polynomial of order m, we
have M = m + 1 and �(λ) can be obtained from an economical QR
or SVD on the following Vandermonde matrix

V =

⎡
⎢⎣

1 λ1 λ2
1 . . . λm

1
...

1 λK λ2
K . . . λm

K

⎤
⎥⎦,

where we assume M < K. One can do this with any set of smooth
basis functions, e.g. Bernstein polynomials as in Yatawatta (2016).
Note that we assume to have access to entire frequency range during
a single calibration run, however, if this frequency range is divided
into smaller intervals which are calibrated separately, then more
generic methods such as splines can be used, which will have a
slightly modified � (Craven & Wahba 1978). We will drop the
dependency on λ from the notation as it is assumed not to change
during a single calibration run of T snapshots. Using � we can
model the gains as

θ = (� ⊗ I2PQ)α, (12)

where the entries of α are the coefficients for the smooth functions,
I2PQ is an identity matrix of size 2PQ, and ⊗ is the Kronecker
product. Note that the only change in the analysis of the previous
section is the definition of the Jacobian which then becomes

Js(α) = J(θ)(� ⊗ I2PQ).

The semilinearity is retained by this change of variable, while the
column dimension of J is reduced by a factor of K/M (e.g. for
LOFAR this factor can be more than a hundred for calibration of
hundreds of channels with a low-order polynomial). If accurate,
this model should reduce the 21-cm signal suppression substan-
tially, while not increasing the leakage from the sky model into
the residuals. The foreground leakage (i.e. the unmodelled nuisance
part of the data which is not of interest to the analysis of the desired
signal) can increase, but as before we assume this to be solved in a
post-processing step.

3.3.2 Regularization of high-order gain model terms

Direction-dependent calibration is typically done on time-scales of
several minutes (e.g. ∼ 10 min for LOFAR) for a data set of hundreds
of hours. This means the variation in gains for different clusters,
especially the ones further from the centre of the main beam, can be
large. Choosing a fixed basis function might not be enough. In this
scenario a possible solution is to allow wider set of basis functions,
or equivalently enlarge M and allow for more flexibility in �, while
penalizing the newly added dimensions with a regularization term.
We will investigate this here. Let M = M1 + M2 such that we can
split the enlarged � as

� = [�1, �2],

where �2 is the extra added freedom. In this case we have θ =
(�1 ⊗ I2PQ)α1 + (�2 ⊗ I2PQ)α2, which is a smooth function with
an additional ‘less’ smooth variation around it. By limiting the
magnitude of α2, we control this additional term. We can formulate
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5484 A. Mouri Sardarabadi and L. V. E. Koopmans

this approach as a new optimization problem

θ̂ = arg minθ f (θ) + ∑
q γqθ

H
q (�2�

H
2 ⊗ I2P )θq

subject to P⊥
�θ = 0,

where P� = ��H ⊗ I2PQ, γ q is a regularization parameter, and
θq is the subset of θ corresponding to qth cluster. This model still
enforces a smooth solution of a polynomial of (maximally) or-
der M − 1, but if the regularization is large, the solution reduces
back to a polynomial of order M1 − 1, as in the case discussed in
previous section. Standard regularization (e.g. Tikhonov) around a
smooth function would be equivalent to letting M2 = K − M1, which
could be a large number (depending on the number of frequency
channels). The regularization parameters can be chosen based on
the statistics of the gains, if they are known, or by updating them
during optimization. Here we assume that the regularization param-
eters, while (possibly) different for each cluster, are constant values
during a single calibration run of T time samples. The constraint
P⊥

�θ = 0 is a different way of stating equation (12) in the opti-
mization setting, forcing the solution to be a low-order polynomial,
while θH

q (�2�
H
2 ⊗ I2P )θq suppresses the contribution of �2 to the

solution depending on the level of regularization (i.e. values of γ q).
Using the semilinearity again, we can show (see Appendix B) that
in this case the residuals are given by e(θ̂ ) = [I − Z(θ̂)]r̂ where

Z(θ) = J(θ)
[
P�J(θ)H J(θ)P� + 2�(�2�

H
2 ⊗ I2PQ)

]†
J(θ)H ,

and � is a diagonal matrix with QK blocks of the form γqI2P .
Note that, due to regularization, the matrix Z is not a projection.
However, the expression for the residual still allows us to calculate
the suppression exactly for a given solution θ̂ , the basis functions
in � and a set of regularization parameters γ q in a similar way to
the previous section. The interpretation of leakage terms remains
valid. The exact interpretation of Z is beyond the scope of this
paper, however, in Appendix B we derive the expression for Z from
a Bayesian perspective, which provides some statistical insight for
interpreting its effects on the solution.

3.3.3 Effect of early termination on signal suppression

Given the large number of calibration runs that must be performed
for long observations, it is essential to know if we can relax the stop-
ping criteria for the applied algorithms. In this section, we motivate
how the results we derived for the regularized calibration problem
can be used to approximate the effects of the early termination of
a constrained problem. Here we assume to have access to an al-
gorithm that solves for a smooth solution using a single basis set
equivalent to the scenario in Section 3.3.1 (i.e. M = M1). We also
assume that the chosen algorithm does not enforce the constraint
P⊥

�θ = 0 at each iteration and it is terminated before full conver-
gence (e.g. an early terminated ADMM algorithm). By translating
this constrained problem into a regularized problem, we can approx-
imate its behaviour. We allow �2 to ‘fill’ the entire parameter space
or equivalently let M2 = K − M1. For this regularized problem we
have P� = I and �2�

H
2 = I − �1�

H
1 . The entire regularization is

then specified by �1, which must be the case because the original
problem assumes M2 to be zero. This approach allows for more
fluctuations in the solutions, but the amplitude of these fluctuations
is limited because of the regularization. Hence, by increasing the
regularization parameters, we simulate the effect of increasing the
number of iterations. In the limit, the solution will be forced on the
subspace of �1 which is also what happens at the convergence of
the original problem.

3.4 Effect of a baseline cut on the residuals

One strategy to avoid suppression of the desired 21-cm signal is to
exclude the baselines on which we want to preserve the signal from
the calibration data. Patil et al. (2017) follow such a strategy by
removing all the baselines below 250 λ from the calibration data.
Although this indeed eliminates suppression on shorter baselines,
it also causes an increased power, denoted by ‘excess noise’, on
the residuals for the excluded baselines. In this section, we derive
the expression for the residuals on the excluded baseline, and in
the next section, we show, by simulations, how this strategy affects
the power spectrum. While it is possible to include the baseline
cut in the mask matrix, M, the expression for the residual given in
previous sections would then only be valid for the visibilities which
are included during the calibration. We are mainly interested in the
residuals on the removed baselines, and hence we reformulate this
problem in a somewhat different way.

The calibration problem with a baseline cut can be formulated as

θ̂ = arg minθ ‖P⊥
sb[r̂ − r(θ)]‖2

2 + ∑
q γqθ

H
q (�2�

H
2 ⊗ I2P )θq

subject to P⊥
�θ = 0,

where P⊥
sb is a projection matrix that removes the short baselines

from the data and Psb is the projection matrix that only retains
the short baselines. This optimization problem is a slightly modi-
fied version of the problem discussed in Section 3.3.2. Using the
semilinearity, the residuals on the removed baselines are found to
be

e(θ̂ ) = Psb[I − Zsb(θ̂ )]r̂, (13)

where

Zsb = J
[
P�JH P⊥

sbJP� + 2�(�2�
H
2 ⊗ I2PQ)

]†
JH P⊥

sb,

and we have dropped dependency on θ here for better readability.
The main difference between the expression for Zsb and Z from the
previous sections is the term JH P⊥

sbJ. Ignoring the regularization
term for the moment, we see that this matrix indicates the level with
which the gains can be calibrated independently of the removed
baselines. If this term is singular, it indicates that the (unconstrained)
problem is not identifiable and if it is badly conditioned, it will
result in signal amplification. In the next section we see that this is
exactly what happens, especially if the sky-model errors are large.
In order to gain more insight into the suppression behaviour of gain
calibration, we need to test these results with a sufficiently realistic
model. That is the objective of the next section.

4 SI M U L AT I O N S O F 2 1 - C M S I G NA L
SUPPRESSION

Given a realistic simulation of an instrument, we can directly cal-
culate the suppression of any 21-cm signal during the calibration
process, in the context of a calibration model that consists of mul-
tiple source clusters, an unmodelled component of the sky, and the
desired 21-cm signal plus noise. In this section, we use LOFAR
(van Haarlem et al. 2013) and the LOFAR EoR KSP calibration
approach (see Patil et al. 2017, for details) as an example for testing
the differences between various calibration approaches. We study
the suppression using a Gaussian random field for the 21-cm sig-
nal which is maximally white (spatially and in frequency), on the
chosen frequency range and below 250λ, in order to see the effect
equally well on all scales of interest. Given that the signal suppres-
sion is scale dependent but relative, the exact choice of the 21-cm
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signal is of secondary nature since it drops out when calculating
the ratio between the input and output signal and only if chosen too
strong might it affect the gain solutions.

4.1 Simulation set-up

For the following simulations we assume P = 62 receivers (i.e.
LOFAR stations) and a model of the North Celestial Pole, which is
one of the fields used for 21-cm EoR signal detection with LOFAR-
HBA. We use the model that is currently used for calibration of the
LOFAR-EoR data (Patil et al. 2017). We have simplified the model
slightly by replacing some compact Gaussian sources with point
sources of equal magnitude, which is not a relevant change. We use
K = 53 sub-bands with a bandwidth of 195.3 kHz which gives us
approximately a total bandwidth of 10 MHz centred symmetrically
around 150 MHz. The ∼28 000 source components are split into
Q = 122 clusters spread around the sky, but predominantly inside
the primary beam of LOFAR-HBA. For simplicity, although this is
motivated by the slow changes in gains in LOFAR, we assume the
gains to remain constant (or coherent) during 10 min and the data
to have a time resolution of 1 s which gives T = 600. Sampling
at the Nyquist rate, we have N = 	2 × 195.3 × 103
 electric
field measurements for each snapshot of 1 s and each receiver. An
additional noise term is added to account for the receiver noise and
a constant sky temperature using Rn. We simulate the 21-cm signal
only on baselines with a length less than 250 λ. These baselines are
also used to make the final baseline-delay power spectra. On the
longer baselines, the signal is too weak to be detected by LOFAR.
The algorithm used is a Newton-based algorithm with a stopping
criterion ‖∂f (θ)/∂θ‖ < 10−8 which is small enough for θ̂ to be a
critical point of the cost function and to ensure that the relations used
for suppression are valid. The technical details of the algorithm are
beyond the scope of this paper and will be reported separately. For
the smooth basis functions, we use a polynomial set. The maximum
allowed freedom for these polynomials is chosen to be three which
means that M = 4. We chose the large-scale fluctuation of the gains
for 10 MHz to be dominated by a first-order polynomial, which
makes M1 = 2.

4.2 Suppression tests using the complete sky model

4.2.1 Various scenarios

We test the 21-cm signal suppression in two scenarios. In one sce-
nario we carry out a full smooth gain estimation (Scenario 1) and in
the other scenario (Scenario 2) we study the effect of enforcing only
�1, but terminating before convergence, as discussed in Section 3.3.
This means that in Scenario 1, M1 = 2, M2 = 2 while in Scenario 2
we have M1 = 2 and M2 = K − M1. We choose a much larger
regularization term for the latter in order to emulate premature ter-
mination after several iterations. The sky model is used for both the
generation of the data as well as calibration and hence except for
the 21-cm signal and noise there are no addition signals, i.e. rf = 0.
The matrix V is constructed, and then, via an economical QR de-
composition, � is obtained. The gains are generated as the sum of
two components for each part of �. The expected values of the gains
are generated with �1 and a proper complex normal distributed ran-
dom variables with a variance σ 2 = 0.07 is generated for �2. The
regularization terms are then chosen uniformly with γ q = 1/σ 2 for
the full smooth calibration in Scenario 1. For the second simulation,
Scenario 2, we use γ q = 100/σ 2 to account for several iterations that
forces the solutions closer to �1, but not exactly on the subspace
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Figure 1. Real part of the gain solutions as a function frequency for a single
station and cluster.

spanned by �1. This approach is similar to Scenario 1, but mimics
terminating optimization before convergence, hence leaving extra
gain fluctuations from �2 in the solution.

4.2.2 Results and discussions

Fig. 1 illustrates an example of the difference between the solutions
for the two scenarios. As expected the solution for Scenario 1 is
much smoother and as a result has a much smaller degree of free-
dom (i.e. less dimensions are projected out). This is confirmed by
the power-spectrum results illustrated in Fig. 2 (left-hand panel).
The latter figure clearly shows that if smoothness is not exactly
enforced, a large portion of the 21-cm signal power spectrum is
heavily suppressed (up to an order of magnitude). It is important to
note that if the suppression is expressed in the terms of the 2-norm
of the signal ‖Zr21‖2/‖r21‖2 only a suppression of 17 per cent is
estimated for Scenario 2. This indicates that calculating the power
spectrum, in the region of interest, gives a much more accurate pic-
ture of suppression. Suppression is stronger on the shorter baselines
and smaller delays. We note that this suppression on short baselines
is similar to that seen by Patil et al. (2016). The polynomial basis
function used is of order three, undulating on scales of ∼0.3μs or
smaller. Any scale corresponding to a delay below this value can
therefore be modelled away by this basis function, and it is exactly
where the suppression increases rapidly.

4.3 Suppression test with an incomplete sky model

The final simulation is that where the sky model is incomplete,
which is much closer to a realistic calibration scheme. The set-up
for this simulation is similar to the one in the previous section with
the exception that all the sources in the model which are smaller
than 1 mJy are removed from the calibration model. This adds an ad-
ditional foreground term and rf �= 0. Again we calculate the power
spectra for both scenarios and compute the suppression. Fig. 2 (bot-
tom row) shows that using an incomplete sky model the suppression
is more prominent even when we fully enforce smoothness. This
effect can be explained using the results in Appendix C which show
that the suppressed part of the 21-cm signal is proportional to the
error in the model, r(θ̃ ) − r(θ̂ ), and the foreground term rf , which
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5486 A. Mouri Sardarabadi and L. V. E. Koopmans

Figure 2. Top row: The ratio of the power spectra for the output and the input 21-cm signals. The left-hand panel shows their ratio when a complete sky model
is used in the calibration, but allowing for some residual fluctuations of the gains around a smooth model, mimicking non-convergence or regularization. The
right-hand panel shows the ratio when one forces the solutions to lie exactly on a smooth model of low order. The signal suppression at short delays are due
to the allowed gain-model variations on several MHz scales. The scale where this suppression starts is generally set by the frequency-scale of the smoothness
of the instrumental gains and then matched by the scale of the smoothness of gain model. In this simulation, this is assumed to be � 3 MHz, corresponding to
τ � 0.3μs. This indeed corresponds to where suppression of the signal is significant. Bottom row: idem, for an incomplete sky model.

are both larger in this scenario. Hence sky-incompleteness in the
calibration model leads to enhanced 21-cm signal suppression. Al-
though, to limit computational effort, we have removed sources <1
mJy from the model, rather than adding sources below the lower
flux limit present in it, to demonstrate the effect of model incom-
pleteness visually. We note that in reality the removed sources are
part of the LOFAR sky model and hence the level of suppression is
likely to be smaller than illustrated in Fig. 2 (bottom row).

4.4 Suppression test with a baseline cut

In this section, we will repeat all four tests done, in the previ-
ous sections, with the additional modification of a baseline cut.
All the baselines below 250λ are removed from the data before
the calibration, similar to the approach by Patil et al. (2017), and

the effect of this operation on the power spectrum is studied. The
results illustrated in Fig. 3 show the ratio of the spectra for both
complete and incomplete sky models. By comparing these results
with the results from previous sections, we see that the suppres-
sion behaviour of the algorithm in the case of partial smoothness is
significantly improved. We note that this is the calibration strategy
taken in Patil et al. (2017). We also see that where the signal was
mainly suppressed, it is now amplified, which indicates degeneracy
in the calibration model on those scales. This effect has also been
seen by Patil et al. (2017) and earlier described by Trott & Wayth
(2016). These figures also illustrate that both with and without a
baseline cut it is beneficial to enforce smoothness more rigorously.
Both the suppression and amplification of the signal (and with high
probability also the leakage terms) are reduced, which agrees with
the results found by Ewall-Wice et al. (2017).
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Signal suppression due to calibration 5487

Figure 3. Top row: The same as in Fig. 2 excluding baselines at <250λ during calibration. Bottom row: The same as in Fig. 2 for an incomplete sky model
and excluding baselines at <250λ during calibration.

5 C O N C L U S I O N S

In this paper, we have presented the first theoretical model that
allows one to quantify the suppression of the cosmological 21-
cm signal, due to direction-dependent gain calibration of radio-
telescope receivers (e.g. dishes or aperture-arrays). By exploiting
the ‘semilinearity’ property of the gain calibration models, we have
shown that this suppression can be quantified with high precision
and, as long as the signal is weak and does not bias the gain solutions
themselves strongly, the result is independent of the 21-cm signal
itself. The closed-form expressions for the residuals, that we present,
allow one to study various leakage terms and clearly illustrate the
trade-offs inherent to the calibration problem and the choices that
are made (e.g. completeness of the sky model, number of directions
to solve for, number of frequency channels to include, the level
smoothness enforced on the solutions, baseline cut, etc.). We have
found the following main results:

(1) If the sky model is complete, constraining and regularizing
direction-dependent gain solutions to be smooth functions of fre-
quency reduces suppression of the 21-cm signal to nearly zero on
all short baselines, above a delay that corresponds roughly to the

scales on which the gains can vary. We demonstrate this for LO-
FAR, showing that its current direction-dependent gain calibration
(as described in Yatawatta 2016) in just over a hundred directions,
is a feasible approach as long as the solutions are enforced to be
smooth on scales larger than several MHz, and assuming that also
the true gains are smooth on those scales (which is an instrument
requirement for any successful 21-cm detection).

(2) To our knowledge, a novel result is that an incomplete sky
model does not only cause leakage of strong foreground signals into
the cosmological 21-cm signal as shown by Barry et al. (e.g. 2016)
and Patil et al. (e.g. 2016), but it also degrades the quality of the
21-cm residuals and increases the level of signal suppression even
if smoothness is fully enforced. This approach increases the 21-cm
signal suppression even if the foregrounds and the 21-cm signals
are entirely uncorrelated.

(3) Finally we find that introducing a baseline cut, where one
calibrates the signal on shorter baselines using only the longer
baselines, removes signal suppression, but conversely causes an en-
hanced signal when the sky model is incomplete. Enforcing spectral
smoothness, however, as also shown by Ewall-Wice et al. (2017),
removes this signal enhancement.
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Although we conclude that forcing the gain solutions on smooth
functions is an absolute requirement for 21-cm signal detection
experiments [see discussions on these requirements in Barry et al.
(2016), Trott & Wayth (2016), and Yatawatta (2016)], as is having
a sky model that is as complete as possible, in practice this is
computationally often very expensive. Performing for example 30–
40 iterations of a full Newton-based calibration or increasing the
number of sky-model components by an order of magnitude is not
feasible when thousands of hours of data (petabytes) have to be
processed. Both are crucial to avoid significant suppressing of the
desired 21-cm signal. Adding a baseline cut mitigates suppression
at the cost of enhancing power due to calibrating on an incomplete
sky model. Finding the right balance between enforcing sufficient
smoothness and reaching full convergence and having a sufficiently
complete sky model, as attempted in the calibration approach of
Yatawatta (2016), is therefore essential for detecting and properly
quantifying the 21-cm signal.

A final conclusion is that our simulations for LOFAR strongly
suggest that the low-frequency part of the Square Kilometre Ar-
ray (i.e. SKA-low), being very similar to LOFAR in its layout and
having a much improved instantaneous sensitivity and uv-coverage,
should also be calibratable in at least ∼100 directions for each sta-
tion over a frequency band ∼10 MHz and on time-scales less than
10 min. The underlying requirement for this to succeed, however,
is that the direction-dependent receiver gains of the stations, as
well as the model gains, should be intrinsically smooth on scales
of at least several-MHz frequency scales, or larger, and that the
gain-calibration sky model is complete to the mJy level. This con-
clusion is in line with the conclusions drawn by Trott & Wayth
(2016).
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APPENDI X A : SEMI LI NEARI TY OF DDC

In this section, we illustrate that the model used in Section 2 satisfies
the semilinearity property. We define a general form of semilinear
functions and some of their properties. We call any vector-valued
vector-function f(θ) (i.e. a mapping from Cm → Cn) for which
holds

f(θ) = JCθ, (A1)

where J = ∂f(θ)/∂θT is the Jacobian matrix of f(θ) and C is a
constant matrix, semilinear.

The following properties hold for functions with semilinear prop-
erty:

(i) If two semilinear functions f1(θ) and f2(θ) share the same
constant matrix C, then the function obtained by stacking them is
also semilinear with the same C, i.e.

f3(θ) =
[

f1(θ)
f2(θ)

]
=

[
J1

J2

]
Cθ,

where Ji = ∂fi(θ)/∂θT for i = 1, 2.
(ii) A linear transformation of the form θ = Bθ1 keeps the semi-

linearity property with new constant matrix that satisfies

BC1 = CB,

i.e. f(Bθ1) = J1C1θ1, where J1 = ∂f(θ1)/∂θT
1 .
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(iii) For the sum of two semilinear functions with different vari-
ables, e.g. f1(θ1) and f2(θ2) where ∂θ1/∂θ

T
2 = 0, we have

f3(θ1,θ2) = f1(θ1) + f2(θ2)

= [
J1 J2]

][C1 0
0 C2

][
θ1

θ2

]
,

and hence, f3(θ1,θ2) is also semilinear.

Because the vector r(θ) is formed by stacking the covariance
matrices for a single snapshot at a single frequency channel, we
can show the semilinearity for a single snapshot first, and then use
property (i) to show this for r(θ). We can also use property (iii) to
generalize a model with a single cluster, to a model with multiple
clusters. Therefore using these two properties, we only need to show
that semilinearity holds for Q = 1 (e.g. direction-independent gain
calibration). The model for a single snapshot and cluster is given
by

R = M � G�GH = G(M � �)GH ,

where � is the element-wise multiplication of two matrices of the
same size. Hence, without loss of generality, we can take the flag-
ging into the sky model as �̃ ≡ M � � and rewrite the vectorized
measurement equation as

r = vect(R) = (G∗�̃
T ◦ IP )g = (Ip ◦ G�̃)g∗, (A2)

where g = vectdiag(G) is the P × 1 vector of complex gains and we
used the property vect(ADB) = (BT ◦ A)vectdiag(D) with ◦ as the
Khatri-Rao (or column-wise Kronecker) product and D a diagonal
matrix. Using these two presentations for θ = [gT , gH ]T we have

J = ∂r(θ)

∂θT
= [G∗�̃

T ◦ IP , Ip ◦ G�̃].

To show the semilinearity of r(θ) we need to show that equation (8)
holds. In order to do this we calculate

Jθ = [G∗�̃
T ◦ IP , Ip ◦ G�̃]

[
g
g∗

]

= (G∗�̃
T ◦ IP )g + (Ip ◦ G�̃)g∗ = 2r,

which as expected leads to C = 1/2I2∗P . We see that C does not de-
pend on frequency, time, or direction. Now we can use property (iii)
to generalize these results to cases where Q > 0 which leads to
C = 1/2I2QP . Similarly for a smooth basis we should note that �

is a unitary matrix and hence �† = �H and using property (ii) with
B = � ⊗ I we get

C = 1

2
(� ⊗ I)†(� ⊗ I) = 1

2
I2QPM.

Except for the dimensions, the constant matrix C is the same for
all the transformations of DDC we have applied throughout this
manuscript.

APPENDIX B: BAY SIAN INFERENCES AND
SEMILINEARITY

In this section, we use the maximum a posteriori estimator (MAP)
to both show a detailed derivation of the matrix Z and its statistical
interpretation. We start by the definition of the MAP estimator,
which is given by

θ̂MAP = arg max
θ

p(Y|θ)p(θ),

where p(Y|θ) is the probability distribution function (PDF) of the
observed voltages given the gains (with Y a KTP × N data matrix

of all measured voltages) and p(θ) is the prior PDF for the gains.
Another way to achieve the same results is using the log-likelihood
instead of the PDF. In this case the MAP estimator can be written
as

θ̂MAP = arg min
θ

l(Y|θ) + l(θ), (B1)

where l(Y|θ) = − ln(p(Y|θ)) and l(θ) = − ln(p(θ)). We already
know that Y is a proper complex Gaussian random variable with
zero mean and its covariance matrix is given by the matrices Rt,k . For
θ we also assume a proper complex Gaussian random variable with
E{θ} = (�1 ⊗ I2PQ)α1 and covariance Cθ = �−1(�2�

H
2 ⊗ I2PQ).

Using these distributions, at the solution we have

∂[l(Y|θ) + l(θ)]

∂θT
= P�JH [Cε(θ)]−1(r(θ) − r̂) + C†

θθ = 0, (B2)

where J = ∂r(θ)/∂θT and

Cε(θ) =

⎡
⎢⎣

RT
1,1 ⊗ R1,1

. . .
RT

T ,K ⊗ RT ,K

⎤
⎥⎦,

with

Rt,k =
∑

q

Gq,t,k�q,t,kGH
q,t,k + Rn,t,k .

Now using the semilinearity property and (B2) we have

P�

(
1

2
JH [Cε(θ)]−1J + C†

θ

)
P�θ = P�JH [Cε(θ)]−1r̂,

where we used the fact that C†
θ = P�C†

θP�. This system of equa-
tions is consistent and hence we find the solution

θ = 2
[
P�(JH [Cε(θ)]−1J + 2C†

θ)P�

]†
P�JH [Cε(θ)]−1r̂

and the residuals become

e(θ) = r̂ − JP�

[
P�(JH [Cε(θ)]−1J + 2C†

θ)P�

]†
P�JH [Cε(θ)]−1r̂.

To simplify these results to the regularized LS problem in Sec-
tion 3.3.2 we need to replace Cε with the identity matrix. In this
case the residuals become

e(θ) = r̂ − J
[
P�JH JP� + 2�(�2�

H
2 ⊗ I2PQ)

]†
JH r̂

= [I − Z]r̂,

where we have removed some redundant projection matrices. An-
other way to reach the same expression is to use the Lagrange func-
tion of the regularized problem and use the semilinearity property.
Using either a Bayesian methodology or the Lagrange function, the
expression for Zsb can also be found in similar manner.

APPENDI X C : INCOMPLETENESS AND
SUPPRESSION

The semilinearity allows us to write the relation between the resid-
uals at any two points θ1 and θ2 as

e(θ2) = e(θ1) − r(�θ) − J(θ1)�θ,

where �θ = θ2 − θ1.
Two important points are the true gains, θ̃ and the solution to

the optimization problem θ̂ . Using these two points in the relation
above, we can express the removed part of the 21-cm signal as a
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function of other contributors to the visibilities. For the residual at
the solution we have

e(θ̂ ) = e(θ̃ ) − r(�θ) − J(θ̃ )�θ.

While this expression shows how the residual is related to the error
in the solutions, θ̂ − θ̃ , it does not show how exactly the error in
the visibility affects these solutions. We know from equation (9)
that at the solution P(θ̂ )e(θ̂ ) = 0. By multiplying both sides of the
expression above by P(θ̂ ) and writing out the expression for e(θ̃ )
we have

P(θ̂)
[
r(θ̃ ) − r(θ̂ ) − r21(θ̃ ) − rf (θ̃ ) − ε

]
= 0

or

P(θ̂ )r21(θ̃ ) = P(θ̂ )
[
r(θ̃ ) − r(θ̂ ) − rf (θ̃) − ε

]
. (C1)

This shows that the suppressed part of the 21-cm signal is propor-
tional to the error in the model, r(θ̃ ) − r(θ̂ ), which is the result of
noisy/biased solutions and foregrounds. This also shows that when
rf is large, it contributes two times to the signal degradation. The
first contribution is direct and the second is by increasing the bias
in θ̂ and hence increasing r(θ̃ ) − r(θ̂ ).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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