179 research outputs found

    Clarifying mammalian RISC assembly in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Argonaute, the core component of the RNA induced silencing complex (RISC), binds to mature miRNAs and regulates gene expression at transcriptional or post-transcriptional level. We recently reported that Argonaute 2 (Ago2) also assembles into complexes with miRNA precursors (pre-miRNAs). These Ago2:pre-miRNA complexes are catalytically active <it>in vitro </it>and constitute non-canonical RISCs.</p> <p>Results</p> <p>The use of pre-miRNAs as guides by Ago2 bypasses Dicer activity and complicates <it>in vitro </it>RISC reconstitution. In this work, we characterized Ago2:pre-miRNA complexes and identified RNAs that are targeted by miRNAs but not their corresponding pre-miRNAs. Using these target RNAs we were able to recapitulate <it>in vitro </it>pre-miRNA processing and canonical RISC loading, and define the minimal factors required for these processes.</p> <p>Conclusions</p> <p>Our results indicate that Ago2 and Dicer are sufficient for processing and loading of miRNAs into RISC. Furthermore, our studies suggest that Ago2 binds primarily to the 5'- and alternatively, to the 3'-end of select pre-miRNAs.</p

    Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi

    Get PDF
    Short hairpin RNAs can provide stable gene silencing via RNA interference. Recent studies have shown toxicity in vivo that appears to be related to saturation of the endogenous microRNA pathway. Will these findings limit the therapeutic use of such hairpins

    Cross-Mapping Events in miRNAs Reveal Potential miRNA-Mimics and Evolutionary Implications

    Get PDF
    MicroRNAs (miRNAs) have important roles in various biological processes. miRNA cross-mapping is a prevalent phenomenon where miRNA sequence originating from one genomic region is mapped to another location. To have a better understanding of this phenomenon in the human genome, we performed a detailed analysis in this paper using public miRNA high-throughput sequencing data and all known human miRNAs. We observed widespread cross-mapping events between miRNA precursors (pre-miRNAs), other non-coding RNAs (ncRNAs) and the opposite strands of pre-miRNAs by analyzing the high-throughput sequencing data. Computational analysis on all known human miRNAs also confirmed that many of them could be involved in cross-mapping events. The processing or decay of both ncRNAs and pre-miRNA opposite strand transcripts may contribute to miRNA enrichment, although some might be miRNA-mimics due to miRNA mis-annotation. Comparing to canonical miRNAs, miRNAs involved in cross-mapping events between pre-miRNAs and other ncRNAs normally had shorter lengths (17–19 nt), lower prediction scores and were classified as pseudo miRNA precursors. Notably, 4.9% of all human miRNAs could be accurately mapped to the opposite strands of pre-miRNAs, which showed that both strands of the same genomic region had the potential to produce mature miRNAs and simultaneously implied some potential miRNA precursors. We proposed that the cross-mapping events are more complex than we previously thought. Sequence similarity between other ncRNAs and pre-miRNAs and the specific stem-loop structures of pre-miRNAs may provide evolutionary implications

    Gene Regulation in Giardia lambia Involves a Putative MicroRNA Derived from a Small Nucleolar RNA

    Get PDF
    Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3β€² end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3β€²-untranslated region (3β€² UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2β€²-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia

    RNA Interference Is Responsible for Reduction of Transgene Expression after Sleeping Beauty Transposase Mediated Somatic Integration

    Get PDF
    Integrating non-viral vectors based on transposable elements are widely used for genetically engineering mammalian cells in functional genomics and therapeutic gene transfer. For the Sleeping Beauty (SB) transposase system it was demonstrated that convergent transcription driven by the SB transposase inverted repeats (IRs) in eukaryotic cells occurs after somatic integration. This could lead to formation of double-stranded RNAs potentially presenting targets for the RNA interference (RNAi) machinery and subsequently resulting into silencing of the transgene. Therefore, we aimed at investigating transgene expression upon transposition under RNA interference knockdown conditions. To establish RNAi knockdown cell lines we took advantage of the P19 protein, which is derived from the tomato bushy stunt virus. P19 binds and inhibits 21 nucleotides long, small-interfering RNAs and was shown to sufficiently suppress RNAi. We found that transgene expression upon SB mediated transposition was enhanced, resulting into a 3.2-fold increased amount of colony forming units (CFU) after transposition. In contrast, if the transgene cassette is insulated from the influence of chromosomal position effects by the chicken-derived cHS4 insulating sequences or when applying the Forg Prince transposon system, that displays only negligible transcriptional activity, similar numbers of CFUs were obtained. In summary, we provide evidence for the first time that after somatic integration transposon derived transgene expression is regulated by the endogenous RNAi machinery. In the future this finding will help to further improve the molecular design of the SB transposase vector system

    Receptor for Activated Protein Kinase C: Requirement for Efficient MicroRNA Function and Reduced Expression in Hepatocellular Carcinoma

    Get PDF
    MicroRNAs (miRNAs) are important regulators of gene expression that control physiological and pathological processes. A global reduction in miRNA abundance and function is a general trait of human cancers, playing a causal role in the transformed phenotype. Here, we sought to newly identify genes involved in the regulation of miRNA function by performing a genetic screen using reporter constructs that measure miRNA function and retrovirus-based random gene disruption. Of the six genes identified, RACK1, which encodes β€œreceptor for activated protein kinase C” (RACK1), was confirmed to be necessary for full miRNA function. RACK1 binds to KH-type splicing regulatory protein (KSRP), a member of the Dicer complex, and is required for the recruitment of mature miRNAs to the RNA-induced silencing complex (RISC). In addition, RACK1 expression was frequently found to be reduced in hepatocellular carcinoma. These findings suggest the involvement of RACK1 in miRNA function and indicate that reduced miRNA function, due to decreased expression of RACK1, may have pathologically relevant roles in liver cancers

    A Motor Function for the DEAD-Box RNA Helicase, Gemin3, in Drosophila

    Get PDF
    The survival motor neuron (SMN) protein, the determining factor for spinal muscular atrophy (SMA), is complexed with a group of proteins in human cells. Gemin3 is the only RNA helicase in the SMN complex. Here, we report the identification of Drosophila melanogaster Gemin3 and investigate its function in vivo. Like in vertebrates, Gemin3 physically interacts with SMN in Drosophila. Loss of function of gemin3 results in lethality at larval and/or prepupal stages. Before they die, gemin3 mutant larvae exhibit declined mobility and expanded neuromuscular junctions. Expression of a dominant-negative transgene and knockdown of Gemin3 in mesoderm cause lethality. A less severe Gemin3 disruption in developing muscles leads to flightless adults and flight muscle degeneration. Our findings suggest that Drosophila Gemin3 is required for larval development and motor function

    Identification of Gemin5 as a Novel 7-Methylguanosine Cap-Binding Protein

    Get PDF
    A unique attribute of RNA molecules synthesized by RNA polymerase II is the presence of a 7-methylguanosine (m(7)G) cap structure added co-transcriptionally to the 5' end. Through its association with trans-acting effector proteins, the m(7)G cap participates in multiple aspects of RNA metabolism including localization, translation and decay. However, at present relatively few eukaryotic proteins have been identified as factors capable of direct association with m(7)G.Employing an unbiased proteomic approach, we identified gemin5, a component of the survival of motor neuron (SMN) complex, as a factor capable of direct and specific interaction with the m(7)G cap. Gemin5 was readily purified by cap-affinity chromatography in contrast to other SMN complex proteins. Investigating the underlying basis for this observation, we found that purified gemin5 associates with m(7)G-linked sepharose in the absence of detectable eIF4E, and specifically crosslinks to radiolabeled cap structure after UV irradiation. Deletion analysis revealed that an intact set of WD repeat domains located in the N-terminal half of gemin5 are required for cap-binding. Moreover, using structural modeling and site-directed mutagenesis, we identified two proximal aromatic residues located within the WD repeat region that significantly impact m(7)G association.This study rigorously identifies gemin5 as a novel cap-binding protein and describes an unprecedented role for WD repeat domains in m(7)G recognition. The findings presented here will facilitate understanding of gemin5's role in the metabolism of non-coding snRNAs and perhaps other RNA pol II transcripts
    • …
    corecore