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Abstract

In this paper, mixed aleatory/epistemic uncertainties in a robust design problem are
propagated via the use of box-constrained optimizations and surrogate models. The
assumption is that the uncertain input parameters can be divided into a set only
containing aleatory uncertainties and a set with only epistemic uncertainties.
Uncertainties due to the epistemic inputs can then be propagated via a
box-constrained optimization approach, while the uncertainties due to aleatory inputs
can be propagated via sampling. A statistics-of-intervals approach is used in which the
box-constrained optimization results are treated as a random variable and multiple
optimizations need to be performed to quantify the aleatory uncertainties via
sampling. A Kriging surrogate is employed to model the variation of the optimization
results with respect to the aleatory variables enabling exhaustive Monte-Carlo sampling
to determine the desired statistics for each robust design iteration. This approach is
applied to the robust design of a transonic NACA 0012 airfoil where shape design
variables are assumed to have epistemic uncertainties and the angle of attack and
Mach number are considered to have aleatory uncertainties. The very good scalability

of the framework in the number of epistemic variables is demonstrated as well.

Introduction and motivation

Computational methods have been playing an increasingly important role in science
and engineering analysis and design over the last several decades, due to the rapidly
advancing capabilities of computer hardware, as well as increasingly sophisticated and
capable numerical algorithms. However, in spite of the rapid advances and acceptance
of numerical simulations, serious deficiencies remain in terms of accuracy, uncertainty,
and validation for many applications. Many real-world problems involve input data that
is noisy or uncertain, due to measurement or modeling errors, approximate modeling
parameters [1], manufacturing tolerances [2], in-service wear-and-tear, or simply the
unavailability of the information at the time of the decision [3]. These imprecise or
unknown inputs are important in the design process and need to be quantified in some
fashion. To this end, uncertainty quantification (UQ) has emerged as an important area
in modern computational engineering. Today; it is no longer sufficient to predict specific
objectives using a particular physical model with deterministic inputs. Rather, a probabil-
ity distribution function (PDF) or interval bound of the simulation objectives is required
depending on whether aleatory or epistemic uncertainties are involved [4]. Epistemic
uncertainty (or type B, or reducible uncertainty) represents a lack of knowledge about
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the appropriate value to use for a quantity, i.e. there is a single correct (but unknown
value) [5]. This may be, for example, because a quantity has not been measured suffi-
ciently accurately or because the model neglects certain effects. In contrast, uncertainty
characterized by inherent natural randomness is called aleatory uncertainty (or type A, or
irreducible uncertainty). For discrete variables, this randomness is parameterized by the
probability of each possible value. For continuous variables, the randomness is parame-
terized by a PDF. Regulatory agencies and design teams are increasingly being asked to
specifically characterize and quantify epistemic uncertainty and separate its effect from
that of aleatory uncertainty [6].

Probabilistic assessment of uncertainty in computational models consists of three major
phases [7,8]:

1. Data assimilation in which the input parameters are characterized as aleatory or
epistemic (via appropriate PDFs or interval bounds) from observations and
physical evidence

2. Uncertainty propagation in which the input variabilities are propagated through
the mathematical model

3. Characterization of the outputs of the numerical simulation in terms of their
statistical properties

Arguably, the computationally most expensive part of UQ is the second phase. A
mixed aleatory/epistemic UQ typically relies on a nested sampling strategy. Although
the required number of samples grows extremely fast, these strategies are conceptually
easy to understand and are capable of separating the effects of each type of uncer-
tainty [8,9]. For nested strategies, samples are typically first drawn from the epistemic
variables and for each set of epistemic variables, the distribution of the output due to
the aleatory variables is determined using sampling of the aleatory variables. The sim-
plest approach for sampling is the Monte-Carlo (MC) method [10] which for expensive
mathematical models (e.g., high-fidelity physics-based simulations) becomes very quickly
prohibitively expensive due to the large number of model evaluations. For example, the
number of samples required for the epistemic uncertainty grows exponentially fast with
the number of epistemic variables [8]. To alleviate some of the cost, surrogates can
be created as a function of all variables and samples extracted according to a nested
strategy. For relatively low dimensions, this strategy can be effective and, when com-
bined with gradient-enhancement, could be applied to problems of moderate dimension
[11]. However, once the number of epistemic variables increases sufficiently, surrogate-
based approaches will again become prohibitively expensive as the required number
of training points increases exponentially fast for an accurate surrogate model known
as “curse of dimensionality”. In order to address this concern, combinations of sam-
pling and optimization approaches have been explored [9,12]. The idea is that for mixed
aleatory/epistemic problems, the goal of the uncertainty quantification is to produce a
region in which the function is contained with a specific level of confidence, known as
a P-Box [8] or horsetail as shown in Figure 1. The bounds of the confidence interval
of the output distribution must itself be an interval in order to account for the epis-
temic uncertainties. Because only the bounds of this box are required, the sampling
with respect to the epistemic variables can be replaced by one maximization and one
minimization problem.
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Figure 1 A P-Box where every line corresponds to a different set of values of the epistemic variables.

In principle, these mixed sampling/optimization approaches may be posed in two ways:
determining intervals of statistics and determining statistics of intervals:

e Intervals-of-statistics can be viewed as an optimization under uncertainty problem
with the metric of the optimization defined as a relevant statistic of the aleatory
distribution, such as the mean and variance, bounds on a confidence interval, or a
reliability index [9,13]. For each step in the optimization, the aleatory uncertainty is
quantified, and the relevant statistics of the distribution are calculated and used as
the objective function for the optimization.

e Statistics-of-interval poses an optimization problem for each set of aleatory variables,
and repeated optimization evaluations over the epistemic design space can be used to
determine the relevant statistics of the interval [12].

In the statistics-of-interval approach, gradient-based optimization methods can be
employed, assuming that the global extrema in the epistemic design space can be found
this way, reducing the cost of each optimization and ensuring very good scaling as the
number of epistemic variables increases if adjoint capabilities [14,15] are used. To reduce
the number of required optimizations for low statistical errors, a surrogate model of
the optimization results can be constructed with respect to the aleatory variables which
can then be sampled exhaustively, ensuring that fewer optimizations are required to
characterize the statistics of the interval accurately.

A last important observation for the work in this paper is that deterministic optimiza-
tion tools are widely used in engineering practice; however, engineering designs do not
operate exactly at their design point due to physical variability in the environment. These
small variations can deteriorate the performance of deterministically optimized designs.
It is, therefore, necessary to account for these uncertainties in the optimization process
using optimization under uncertainty (OUU) techniques, which implies that UQ is used
in the optimization loop instead of a deterministic simulation. Beginning with the seminal
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works of Beale [16], Dantzig [17], and Tintner [18], OUU has experienced rapid devel-
opment in both theory and algorithms. Dantzig considers planning under uncertainty as
one of the most important open problems in optimization [19,20]. Good overviews of
the state of the art in the field of OUU are provided by Beyera et al. [21], Sahinidis [19],
Giunta et al. [22] and Li [23]. An important subfield in OUU is robust optimization (RO)
[24,25], which can be subdivided into robust-design-based methods and reliability-based
methods [26]. Robust design improves the quality of a product by minimizing the effect
of the causes of variation without eliminating these causes. The objective here is to opti-
mize the mean performance and minimize its variation, while maintaining feasibility with
probabilistic constraints, hence the robust design concentrates on the probability distri-
bution near the mean values. The ability to identify and catalog overly conservative design
margins resulting from applying safety factors on top of other safety factors, for example,
is an important application for the robust design, which is being increasingly viewed as an
enabling technology for design of aerospace, civil, and automotive structures subject to
uncertainty [27-30]. The reliability-based methods, on the other hand, are predominantly
used for risk analysis by computing the probability of failure of a system. Thus, reliability
approaches concentrate on the rare events at the tails of the probability distribution.

The outline of the remainder of this paper is as follows: section ‘Optimization with
mixed aleatory/epistemic uncertainty’ describes the employed OUU approach for mixed
aleatory/epistemic uncertainties in detail. Application results of the presented approach
are given in section ‘Robust design of a transonic airfoil' and section ‘Conclusions’

concludes this paper.

Optimization with mixed aleatory/epistemic uncertainty

A conventional constrained optimization problem for an objective function, J, that
is a function of input variables, D, state variables, (D), and simulation outputs,
f(D) = F(q(D), D), can be written as

rrgn J =J({f,q,D)
s.t. 0 = R(q,D) (1)
0 < g(f,q,D).

Here, the state equation residuals, R, are expressed as an equality constraint, and other
system constraints, g, are represented as general inequality constraints. Note, that R
(and g) could represent any class of models, however, if gradient information is to be used
the models must be differentiable and if surrogate models are to be employed successfully
the models must also be relatively smooth. In the case where the input variables are pre-
cisely known, all functions dependent on D are deterministic. However, given uncertain
inputs all functions in Equation (1) can no longer be treated deterministically.

Objective function evaluation

In this work, the design variables are assumed to have only aleatory or only epistemic
uncertainty. Let « represent the variables associated with aleatory uncertainties and S
represent variables with epistemic uncertainties, for example, geometric shape variables
subject to manufacturing tolerances, or flow boundary conditions subject to random fluc-
tuations. The design variables D = (D, Dg) are considered to be either the mean values
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of aleatory uncertainties which are assumed to be statistically independent and normally
distributed with a ~ N (Dy, o]%), or the midpoint of bounds on epistemic uncertainties
with 8 € I(D), where I(D) = [Dg — sp, Dg + sp]. Note that op and sp are treated as fixed
but this could be easily changed. One could also derive equations for correlated and/or
non-normally distributed aleatory variables; however, the analysis and resulting equations
become more complex [31] and are beyond the scope of this paper.

In order to account for both types of uncertainty, sampling is performed for the aleatory
variables while optimization is performed over the epistemic variables as described in the
introduction. Let f(D) = f(«, B) represent the output of interest of a simulation with
uncertain inputs then the optimization can be represented mathematically as follows:

Jmax(@) = ﬂrgla%)f (o, B) (2)
fmin(a) = ﬂrer}i(%)f(ar B). (3)

The functional outputs fynax and fimin can now be treated as random variables, since
their only inputs are random variables with associated probability distributions. In the
remainder of this paper, the subscript ext (for extrema) will be used as a placeholder
for either max or min. To characterize the probability distribution of f.x, one must
extract repeated samples of fot according to the underlying PDF of «. Each sampling
entails solving the appropriate optimization problem, Equation (2) or (3), for the speci-
fied sample of «. For these optimizations, an L-BFGS [32,33] algorithm that can utilize
function and gradient information is used in this work, thereby reducing the cost of each
optimization and ensuring excellent scaling in the number of variables with epistemic
uncertainties.

Nonetheless, because of the expense of these optimizations, strategies to reduce the
number of samples and thus the computational cost associated with sampling must be
employed. For this work, a surrogate is created for fext as a function of the aleatory
variables, which enables the extraction of a large number of samples in order to obtain
accurate statistics for very low computational cost. Because the number of aleatory vari-
ables used here is relatively small, the required number of training points for an accurate
surrogate is small, necessitating only a small amount of optimizations. Because the opti-
mization results are viewed as general random variables, any surrogate can be used
to represent the aleatory dependence of the variables. A Kriging surrogate model is
employed in this work. The details of the construction of this particular Kriging model,
which can utilize gradient and Hessian information and employ a dynamic training point
selection, is described in previously published papers [34-37]. The center of the Kriging
domain is prescribed by the mean value of «, Dy, and the boundary is taken to be two
standard deviations op away in all aleatory input dimensions. This implies that for the
normally distributed input variables & more than 97% of all MC samples fall within the
Kriging domain and the less accurate extrapolation capabilities of the Kriging surrogate
model only need to be used for a small fraction of the samples. Since the purpose of this
article is a robust design and not the accurate prediction of the tail statistics, this approach
leads to very good results as demonstrated in section ‘Robust design of a transonic airfoil.

The deterministic optimization problem (1) can now be rewritten. The objective
function can be written in terms of mean values of the functional outputs, fex, and
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typically also becomes a function of the variances, Vary, , for example, for robust design
optimizations, objective functions are typically of the form

J = wl]_’ext + wy Vary,, (4)

where w; are some user-specified weights. The state equation residual equality constraint,
R, is treated deterministically and thus needs to be satisfied for all values of « and 8. The
inequality constraints can be cast into a probabilistic statement such that the probability
that the constraints are satisfied is greater than or equal to a desired or specified proba-
bility, P¢. This statement can be transformed [38] into a constraint involving mean values
and standard deviations (also called moment matching formulation [39]) and the entire
OUU problem can be expressed as [31,40]

min T = T (fext, Varg,, 4,2, B)
s.t. 0 = R(g,a, B) (5)

0 =< g(];ext’q,% ﬁ) - ko'gﬁ

where k is the number of standard deviations, oy, that the constraint ¢ must be displaced
in order to achieve Py. The software package Ipopt (Interior Point Optimizer) [41] for
large-scale nonlinear optimization with constraints is used for the solution of the OUU
problem given by Equation (5). Ipopt also allows users to impose bound or box constraints
on the design variables which can be very helpful in ensuring the stability of the flow
analysis by preventing the exploration of too extreme regions of the design space.

Gradient evaluation
The gradient of the objective function, 7, given by Equation (4) with respect to design
variables associated with aleatory uncertainties is given by

AT 3T dfex 3J dVarg, Afext dVary, ,
= — =w + wa .
dDy ~ 3fuxe dDo  OVarg, dDq dD, dD,

(6)

0 ] 05 B
X

Figure 2 Pressure contours and mesh for angle of attack of 1.25° and a free-stream Mach number of 0.755.
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Figure 3 NACA 0012 airfoil (black) and airfoils resulting from two shape design variable values of
+0.005 (gray).

A Kriging surrogate is built to calculate fu and Vary,  using N training points for each of
which one has to calculate foxt by solving an optimization problem as given by Equation (2)
or (3). This Kriging surrogate is then sampled extensively N times for inputs o,
k =1,...,N chosen based on their underlying probability distribution function. In this
case, @« ~ Dy + opZ with Z ~ AN (0,1) and the Kriging predictions are represented by
fext («X). The mean of the simulation output can then be approximated by

N

_ 1 o
Joi ™ = > el (7)

k=1

and the derivative can be approximated at the same time with little computational
overhead via [42]

df€xt ~ Z dfext(a )di _ Z dfot(O‘ ) )

dok dak

where it is relatively straightforward to calculate dfe#(fk) from the Kriging surrogate
model [42,43]. This is especially true if the Kriging construction process can be gradient-
enhanced since this derivative needs to be readily available for this.

Similarly, the variance and its derivative can be approximated as

Vary,, ~ Zfext(ak) — foxt )
k—
dvarg,,. [ 2 ~ k dfext(a ) - dfext
b, ];fext( ) _Zfe)(tha. (10)

The gradient of the objective function, J, with respect to design variables associated
with epistemic uncertainties is given by

dJ 3T dfext 0J  dVay,, _ Afext o dVary,,

— = 11
dDs ~ 9foqdDp | OVar, dDg YdDg T " dDg 1)
Table 1 Validation of epistemic uncertainty propagation
MethOd Clmin Clmax Cdmin Cdmax
Optimization 0.195 0.344 356 x 1073 6.90 x 1073

LHS sampling 0.195 0.344 3.56 x 1073 6.90 x 1073

Page 7 of 15
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Table 2 Comparison of NLMC and Kriging aleatory uncertainty propagation

Method E/ ag, Ed (ng

NLMC (N = 3,000) 0.269 23x 1072 554 x 1073 6.1 %107

Kriging (N = 5) 0.270 22 % 1072 565 x 1073 7.5 x 107°

Kriging (N = 13) 0.269 24 % 1072 553 x 1073 6.1x 107

Kriging (N = 19) 0.269 23 %1072 554 x 1073 6.1 x 1070
djzerxt %

However, it is not trivial to calculate and aD; where Dg represents midpoints of

epistemic uncertainty intervals since Iﬂllf(fving the midpoint will lead, in general, to differ-
ent extrema for the training points and thus to a different Kriging surrogate which when
sampled leads to different values of fu and Vary, . In contrast, the aleatory gradient was
easy to obtain since one only has to take into account how the sample points change while

being able to reuse the same Kriging surrogate. The current workaround is to use the

approximations
dfext _ df Var, o 12
dDﬁ dDﬂ DuDg dDﬂ

that is the derivative of the mean value is approximated by the derivative of just f with
respect to Dg at the mean values of the aleatory uncertainty variables & and midpoints
of the intervals for the epistemic variables 8. This derivative is, in general, non-zero since
for the epistemic optimizations, the extreme value is typically encountered on the interval
bound. The variances for the problems studied in this paper are much smaller than the
mean values which allow the neglection of %. The following section will demonstrate
that the presented approach can lead to successful robust designs.

Robust design of a transonic airfoil
The steady inviscid flow over a transonic NACA 0012 airfoil is considered as a flow exam-
ple which is described in more detail in Mani and Mavriplis [44,45]. The computational
mesh has about 20, 000 triangular elements. The non-dimensionalized pressure contours
for an angle of attack of 1.25° and a free-stream Mach number of 0.755 are shown in
Figure 2 leading to a lift and drag coefficient of C; = 0.268 and C; = 0.00521, respectively.

In order to perform a robust lift-constrained drag minimization under mixed
aleatory/epistemic uncertainty, one shape design variable on the upper surface and one
on the lower surface which control the magnitude of Hicks-Henne sine bump functions
[46] are allowed to vary. The resulting deformation of the mesh is calculated via a linear
tension spring analogy [44,47]. Both shape design variables are assumed to have epistemic
uncertainties due to manufacturing tolerances. A zero value corresponds to the original
NACA 0012 airfoil and sp,, s taken to be 0.005. Figure 3 shows the original NACA 0012
airfoil and the airfoils resulting from design variable values of £0.005.

The angle of attack and free-stream Mach number are assumed to have aleatory uncer-
tainties which are both modeled with normal distributions. The mean values are given

Table 3 Comparison of NLMC and Kriging predictions for the initial guess with two shape
design variables

C 2
c’min ag cdmax acdmax

NLMC (3,000 optimizations) 0.195 2.1 %1072 7.22 x 1073 79 x 107°
Kriging (13 optimizations) 0.195 2.1 % 1072 7.22 x 1073 79 % 107°

Page 8 of 15
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Table 4 Robust design results with two shape design variables

= 2 =
Pk Cdmax acdmax Clmin aC’min Dy DI Dpoa Dy

k

0 0.5000 794 %1073 81x107% 0600 31x1072 250x 1
1 08413 995x 1073 1.1x10™> 0631 34x1072 2501
2 09772 136x 1072 1.0x 107> 0657 23x 1072 249 x 1
3 10 1 1
4 10 1 1
10 1

072 243x1072 185 0711
072 228x1072 185 0.730
—2 240x 1072 184 0736
—2 250x 1072 185 0745
=2 244x107%2 185 0750
—2 206x 1072 158 0734

0.9986 191 x 1072 18x 107> 0677 25x 1072 249 x
0.9999 210x 1072 27 x 107 0673 20x 1072 244 x

0
0
0
Deterministic 136 x 1073 - 0.600 - 1.76 x 10

by the design variable values, Dpaoa and Dy, and the standard deviations are prescribed
as op,,, = 0.1 and op,, = 0.01, respectively. A robust design problem as given by
Equation (5) can be posed by using

— 2
J=Cq,. + Ch (13)
as objective function and

g:=C,, —Cf 0g = 0¢, (14)

as inequality constraint to maintain a target lift coefficient of C; = 0.6. Box constraints

on all four design variables are used to prevent the generation of invalid geometries from

the mesh movement algorithm and solver convergence issues:
D, ; € [—0.025,0.025] Dyoa €10,1.85] Dy €10.6,0.78] (15)

Even though one flow solve takes only about 10 s on 12 Intel Xeon processors with
3.33 GHz each it is still prohibitively expensive to obtain the mixed aleatory/epistemic
optimization under uncertainty results through either nested sampling or exhaustive sam-
pling of optimization results. In order to provide validation for the OUU framework
with mixed aleatory/epistemic uncertainty the uncertainty propagations of aleatory and
epistemic variables are validated only for the initial and optimized points and also only
using 3, 000 sample points. But before these combined results are shown, the uncertainty
propagations of aleatory and epistemic variables are validated separately.

First, optimization is used to propagate the epistemic uncertainties within the prob-
lem. For this test, the aleatory variables are fixed at their mean value taken to be
Dpoa = 1.25and Dy; = 0.755, and optimization is performed over the epistemic variables
D, = D; = 0 to determine the associated intervals for the output functions of interest.
The interval produced through optimization is validated by performing Latin hypercube
sampling (with 500 samples plus the corners of the domain) over the epistemic variables,
again with the aleatory variables fixed at their mean values. The excellent agreement can
be seen in Table 1. Note that the optimizations only took a few functions and adjoint
gradient evaluation each.

Table 5 Comparison of NLMC and Kriging predictions for optimal design with two shape
design variables obtained for k = 1

2

&dmax acdmax c.Imin Uclmin
NLMC (3,000 optimizations) 995 x 1073 10x 107 0636 40 %1072
Kriging (13 optimizations) (N = 3,000) 102 x 1072 49 %1070 0634 33 % 1072

Kriging (13 optimizations) (N = 10°) 995 x 1073 1.1 %107 0.631 34 % 1072
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Figure 4 NACA 0012 at « = 1.25 (gray), deterministically (black) and robustly (k = 2, red) optimized
airfoils (two shape design variables).

With the optimization portion of the method validated, the ability of the Kriging surro-
gate model to capture the aleatory variation of the output functions of interest is tested
next. For this test, the original NACA 0012 airfoil is used (i.e. no epistemic uncertainty),
and sampling from Kriging surrogates (build from a varying number of training points,
N) is performed over the aleatory variables Daoa = 1.25 and D = 0.755, respectively. In
order to provide validated data, full nonlinear MC (NLMC) sampling is performed over
the aleatory variables, and both distributions are characterized by calculating statistics
of interest using the same samples. For a reasonable trade-off between acquiring accu-
rate statistics and computational cost for the NLMC, 3,000 samples are used. Because
the epistemic variables for this test are fixed, each training point for the Kriging or sam-
ple point for the NLMC requires only a single CFD simulation. A summary of these
comparisons can be found in Table 2.

The Kriging model constructed from only 13 training points yields reasonable results
for a fraction of the cost of a full NLMC simulation. Thus, all the required Kriging
response surfaces for the actual robust design runs are constructed from thirteen train-
ing points and the sampling is performed using N = 10° Latin hypercube samples to keep
the statistical error small. Lastly, in Table 3, a comparison of NLMC and Kriging predic-
tions is presented using the same 3, 000 samples for the initial airfoil and flow conditions

0.1
0.05

-0.05
-0.1

0 0.2 0.4 0.6 0.8 1
X

Figure 5 NACA 0012 airfoil (black) and airfoils resulting from six shape design variable values of
£0.005 (in gray).
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Table 6 Robust design results with six shape design variables

k Py Coan LF i Cirin %G, . Daon Dm
0 0.5000 275 %1073 20 % 1078 0.600 18 x 1072 175 0.600
1 0.8413 287 x 1073 23 %1078 0618 18 x 1072 185 0.602
2 0.9772 328 x 1073 20 x 1077 0.640 20 x 1072 1.85 0623
3 0.9986 560 x 1073 55 % 1070 0.666 22 %1072 185 0.645
4 0.9999 131 x 1072 24 %107 0.700 2.5 % 1072 185 0.668
Deterministic 121 x 1073 - 0.600 - 1.85 0.600

(Dy = D; = 0,Dpaoa = 1.25 and Dys = 0.755) which demonstrates the good quality of the
predictions of the proposed approach for statistics of the lift and drag coefficients. Note
that this time, each training point for the Kriging or sample point for the NLMC requires
a solution of the optimization problem given by Equation (2) or (3).

Using the presented framework for the entire robust design gives the results presented
in Table 4. The number of required optimization iterations for convergence (norm of
gradient less than 10~%) varies between 12 and 22 for all the presented cases. One can
see that the average drag increases as the desired probability, Py, of maintaining the tar-
get lift coefficient of C} = 0.6 is increased. The principal mechanism of achieving this
higher probability is to increase the mean Mach number. Note that a deterministic lift-
constrained drag minimization yields a minimal drag of C; = 1.36 x 1073 at a Mach
number of 0.734 and a lower angle of attack of 1.58°. In Table 5, a comparison of NLMC
and Kriging predictions using the same 3, 000 samples for the optimal design with k = 1
is presented which demonstrates the quality of the predictions for statistics of the lift
and drag coefficients. Also shown in the same table are the resulting statistics if the con-
structed Kriging is sampled N = 10° times. The original NACA 0012 as well as the
deterministically and robustly (k = 2) optimized airfoils are all shown in Figure 4. One can
see that the robustly optimized airfoil looks different from the deterministically optimized
one especially along the lower surface.

The total number of CFD function equivalent evaluations is approximately:

Number of optimization iterations x 2 (one for minimum lift and one for maximum
drag) x 13 (number of training points) x number of optimization iterations per epistemic
optimization x 2 (one function and one gradient call) = 1, 600.

Scalability of the framework

In order to demonstrate the scalability of the framework, the number of epistemic design
variables is increased from two to six and later to fourteen. First, three shape design vari-
ables are placed on the upper surface and three on the lower surface (at 40%, 60% and 80%
chords) and Figure 5 shows the original NACA 0012 airfoil and the airfoils resulting from

Table 7 Comparison of NLMC and Kriging predictions for the optimal design with six shape
design variables obtained for k = 2

E'dmax GCdeax c.Imin o'Clmin
NLMC (3,000 optimizations) 333x 1073 23 %107/ 0.640 20 x 1072
Kriging (13 optimizations) (N = 3,000) 333 x 1073 18 %1077 0.640 20 % 1072

Kriging (13 optimizations) (N = 10°) 328 x 1073 20x 1077 0640 20 x 1072
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Figure 6 NACA 0012 at « = 1.25 (gray), deterministically (black) and robustly (k = 2, red) optimized
airfoils (six shape design variables).

perturbations of all six shape design variables of +0.005. The box constraints to prevent
invalid meshes and flow convergence issues are as follows:

Dig €[—0.01,001]  Dy_5 €[—0.02,0.02]  Daor €[0,1.85] Dy €[0.6,0.78],
(16)

where D; ¢ are the shape design variables closest to the trailing edge on the lower and
upper surfaces, respectively. The robust design results are presented in Table 6. The num-
ber of required optimization iterations for convergence (again norm of gradient less than
10~%) varies between 9 and 27 for all the presented cases.

Again, the average drag and mean Mach number increase as the desired probability,
Py, of maintaining the target lift coefficient is increased. Compared with Table 4, one
also gets lower drag coefficients since the required Mach number to maintain the same
lift was reduced through shape modifications. In Table 7, a comparison of NLMC and
Kriging predictions using the same 3,000 samples for the optimal design with k = 2 is
presented which once again demonstrates the quality of the predictions for statistics of the
lift and drag coefficients. The total number of CFD function equivalent evaluations has
increased from the two epistemic variable case and is approximately as follows: Number
of optimization iterations x 2 x 13 x number of optimization iterations per epistemic
optimization x 2 2 1, 900. This increase is mostly due to the fact that Ipopt now requires a
few more iterations to converge the outer optimization problem. However, this is only an
increase of about 20% though the number of epistemic variables increased from two to six.
The original NACA 0012 as well as the deterministically and robustly (k = 2) optimized
airfoils are all shown in Figure 6. Once again, one can see that the robustly optimized
airfoil looks different from the deterministically optimized one this time especially along
the upper surface.

0.1
0.05

-0.05
-0.1

0 0.2 0.4 0.6 0.8 1
X

Figure 7 NACA 0012 airfoil (black) and airfoils resulting from fourteen shape design variable values
of £0.0025 (in gray).
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Table 8 Robust design results with fourteen shape design variables

k Pk Crnan o, Cionn oc, . Dpon Dm
0 0.5000 321 %x 1073 12x 1078 0.800 15x 1072 400 0461
1 0.8413 340 x 1073 15%x 1078 0816 16 x 1072 400 0485
2 09772 361 x 1073 18x 1078 0.833 16 x 1072 400 0.508
3 0.9986 384 x 1073 23 %1078 0.852 17 x 1072 400 0.531
4 0.9999 423 x 1073 6.3 x 1078 0877 19 x 1072 400 0.562
Deterministic 166 x 1073 - 0.800 - 3.76 0.300

As alast demonstration, the number of epistemic design variables is increased from 6 to
14. Therefore, seven shape design variables are placed on the upper surface and seven on
the lower surface (at 20%, 30%, 40%, 50%, 60%, 80%, and 90% chord) and Figure 7 shows
the original NACA 0012 airfoil and the airfoils resulting from perturbations of all fourteen
shape design variables of +0.0025. The box constraints to prevent invalid meshes and
flow convergence issues are as follows:

D19,13,14 € [—0.00125,0.00125] D3_15€[—0.01,0.01] Dgoa€[0,4] Dpr€[0.3,0.78],
17)

where Dj 14 are the shape design variables closest to the trailing edge on the lower and
upper surface, respectively. The target lift coefficient is increased to C = 0.8 to make
this problem more difficult and the results are presented in Table 8. The number of
required optimization iterations for convergence (again norm of gradient less than 10~%)
varies between 16 to 23 for all the presented cases. The average drag and mean Mach
numbers increase as the desired probability of maintaining the target lift coefficient is
increased. The total number of CFD function equivalent evaluations has increased again
from the two and six epistemic variable case to approximately 2,000, which is only a

modest increase considering how many more epistemic variables are used.

Conclusions

This article describes the use of gradient-based optimizations and Kriging surrogate
models for the propagation of mixed aleatory/epistemic uncertainties for a robust lift-
constrained drag minimization problem. Uncertainty due to epistemic variables is propa-
gated via a box-constrained optimization approach, while the uncertainty due to aleatory
variables is propagated via sampling of a Kriging surrogate model built with the opti-
mization results. This statistics-of-intervals approach makes robust design under mixed
aleatory/epistemic uncertainty possible while at the same time keeping the computational
cost for these types of problems manageable.
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