18 research outputs found

    Acoustic waves in granular materials

    Get PDF
    Dynamic simulations with discrete elements are used to obtain more insight into the wave propagation in dense granular media. A small perturbation is created on one side of a dense, static packing and examined during its propagation until it arrives at the opposite side. The influence of polydispersity is studied by randomly varying the particle sizes by a tiny amount. A size variation comparable to (or larger than) the typical contact deformation, considerably changes sound propagation, i.e., the transmission spectrum becomes discontinuous and lower frequencies are transmitted better in the polydisperse packing. The inter-particle friction affects the dispersion relation, it increases the propagation speed and leads to an extended linear, large wavelength regime

    Sound propagation in isotropically and uni-axially compressed cohesive, frictional granular solids

    Get PDF
    Using an advanced contact model in DEM simulations, involving elasto-plasticity, adhesion, and friction, pressure-sintered tablets are formed from primary particles and prepared for unconfined tests. Sound propagation in such packings is studied under various friction and adhesion conditions. Small differences can be explained by differences in the structure that are due to the sensitivity of the packing on the contact properties during preparation history. In some cases the signals show unexpected propagation behaviour, but the power-spectra are similar for all values of adhesion and friction tested. Furthermore, one of these tablets is compressed uni-axially and under unconfined conditions and the sound propagation characteristics are examined at different strains: (i) in the elastic regime, (ii) during failure, and (iii) during critical flow: the results vary astonishingly little for packings at different externally applied strains

    The influence of particle surface roughness on elastic stiffness and dynamic response

    Get PDF
    Discrete-element method (DEM) simulations of planar wave propagation are used to examine the effect of particle surface roughness on the stiffness and dynamic response of granular materials. A new contact model that considers particle surface roughness is implemented in the DEM simulations. Face-centred cubic lattice packings and random configurations are used; uniform spheres are considered in both cases to isolate fabric and contact model effects from inertia effects. For the range of values considered here surface roughness caused a significant reduction in stiffness, particularly at lower confining stresses. The simulations confirm that surface roughness effects can at least partially explain the value of the exponent in the relationship between stiffness and mean confining stress for an assembly of spherical particles. Frequency domain analyses showed that the maximum frequency transmitted through the sample is reduced when surface roughness is considered. The assumption of homogeneity of stress and contacts in analytical micromechanical models is shown to lead to an overestimation of stiffness

    Influence of packing density and stress on the dynamic response of granular materials

    Get PDF
    Laboratory geophysics tests including bender elements and acoustic emission measure the speed of propagation of stress or sound waves in granular materials to derive elastic stiffness parameters. This contribution builds on earlier studies to assess whether the received signal characteristics can provide additional information about either the material’s behaviour or the nature of the material itself. Specifically it considers the maximum frequency that the material can transmit; it also assesses whether there is a simple link between the spectrum of the received signal and the natural frequencies of the sample. Discrete element method (DEM) simulations of planar compression wave propagation were performed to generate the data for the study. Restricting consideration to uniform (monodisperse) spheres, the material fabric was varied by considering face-centred cubic lattice packings as well as random configurations with different packing densities. Supplemental analyses, in addition to the DEM simulations, were used to develop a more comprehensive understanding of the system dynamics. The assembly stiffness and mass matrices were extracted from the DEM model and these data were used in an eigenmode analysis that provided significant insight into the observed overall dynamic response. The close agreement of the wave velocities estimated using eigenmode analysis with the DEM results confirms that DEM wave propagation simulations can reliably be used to extract material stiffness data. The data show that increasing either stress or density allows higher frequencies to propagate through the media, but the low-pass wavelength is a function of packing density rather than stress level. Prior research which had hypothesised that there is a simple link between the spectrum of the received signal and the natural sample frequencies was not substantiated

    Sound wave propagation in weakly polydisperse granular materials

    Get PDF
    Dynamic simulations of wave propagation are performed in dense granular media with a narrow polydisperse size-distribution and a linear contact-force law. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves, is examined. A size variation comparable to the typical contact deformation already changes sound propagation considerably. The transmission spectrum becomes discontinuous, i.e., a lower frequency band is transmitted well, while higher frequencies are not, possibly due to attenuation and scattering.\ud \ud This behaviour is qualitatively reproduced for (i) Hertz non-linear contacts, for (ii) frictional contacts, (iii) for a range of smaller amplitudes, or (iv) for larger systems. This proves that the observed wave propagation and dispersion behaviour is intrinsic and not just an artifact of (i) a linear model, (ii) a frictionless packing, (iii) a large amplitude non-linear wave, or (iv) a finite size effect
    corecore