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Using an advanced contact model in DEM simulations, involving elasto-plasticity, adhe-
sion, and friction, pressure-sintered tablets are formed from primary particles and pre-
pared for unconfined tests. Sound propagation in such packings is studied under various
friction and adhesion conditions. Small differences can be explained by differences in the
structure that are due to the sensitivity of the packing on the contact properties during
preparation history. In some cases the signals show unexpected propagation behaviour,
but the power-spectra are similar for all values of adhesion and friction tested. Further-
more, one of these tablets is compressed uni-axially and under unconfined conditions
and the sound propagation characteristics are examined at different strains: (i) in the elas-
tic regime, (ii) during failure, and (iii) during critical flow: the results vary astonishingly
little for packings at different externally applied strains.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Granular materials in general [1–12] and especially cohesive, frictional, fine powders show a peculiar flow behaviour [13–
17]. Adhesionless powder flows freely, but when adhesion due to van der Waals forces is strong enough, agglomerates or
clumps form, and can break into pieces again [18–21]. This is enhanced by pressure- or temperature-sintering [22] and, un-
der extremely strong pressure, tablets or granulates can be formed [23–26] from primary particles. Applications can be
found, e.g., in the pharmaceutical industry.

The basic question is how to understand such cohesive, frictional, fine powders and whether one can use sound propa-
gation measurements from simulations to gain additional insight. In contrast to crystalline materials [27,28], information
propagation in disordered and inhomogeneous granular media is far from well understood, especially when friction and
other realistic contact mechanisms are taken into account [29–31]. Understanding better the sound propagation in granular
media will improve, e.g., the interpretation of ultrasound measurements in soil as a non-intrusive way to detect and measure
underground structures. This has applications in archeology, seismology and – because of its cost efficiency – for the discov-
ery and exploitation of natural resources such as ores, coal, or oil.
. All rights reserved.
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Propagation of stress or sound waves through dense granular matter is the superposition of many complex phenomena,
which are caused by the discrete, inhomogeneous, anisotropic and dissipative structure of this class of materials. The prop-
erties of such waves are strongly affected by phenomena like attenuation, scattering, and dispersion [32]. Ballistic pulse
propagation co-exists with slower, multiply scattered coda-like signals [32,33]. The stress- and frequency-dependence of
the wave propagation features are subject of ongoing discussion [32,34] in static and shaken packings as well.

Many-particle simulations methods like discrete element models (DEM) [5,35–40] complement experiments on the scale
of small ‘‘representative volume elements” (RVE) [39]. Deep and detailed insight into the kinematics and dynamics of the
samples can be obtained since the information about all particles and contacts is available at all times. Discrete element
models require the contact forces and torques as the basic input, to solve the equations of motion for all particles in a gran-
ular system. From this, the macroscopic material properties as, among others, elastic moduli, cohesion, friction, yield
strength, dilatancy, or anisotropy can be measured from such RVE tests.

The macroscopic properties are controlled by the ‘‘microscopic” contact forces and torques [32,34,41–43]. Non-linear
contacts [40,44], frequency-dependence [45,46] and also scattering and attenuation in other ‘‘particle type” materials [47]
have been reported.

Research challenges involve not only realistic DEM simulations of many-particle systems and their experimental valida-
tion, but also the transition from the microscopic contact properties to the macroscopic flow behaviour [15,16,39,48,49]. This
so-called micro–macro transition [15,16] will allow a better understanding of the collective flow behaviour of many particle
systems as a function of the particles’ material and contact properties. The resulting micro-parameter based continuum
description (‘‘macroscopic”) of dense granular materials can be useful for field applications (like oil discovery), since particle
simulations (‘‘microscopic”) are not applicable due to the huge system sizes. Some empirical descriptions are available for
dynamic and possibly non-linear deformation and propagation modes [32,34,50].

The paper is organized as follows. After introducing the simulation method in Section 2, the preparation of our samples is
discussed in Section 3. Sound propagation through densely packed granular systems and its dependence on friction and
adhesion is examined in Section 4.1, while sound propagation for different states of compression and failure is reported
in Section 4.2. Summary and Conclusions are given in Section 5.

2. Discrete particle model

To simulate packing, failure and sound propagation in a granular material we use a discrete element model (DEM)
[5,25,35–38,51]. Such simulations can complement experiments on small scale by providing deep and detailed insight into
the kinematics and dynamics of the samples examined. In the following we briefly introduce the method that allows us to
simulate wave propagation in (damaged) packings. The numerics and algorithms are described in text books [52–54], so that
we only discuss the basic input into DEM, i.e., the contact force models and parameters. More details on the contact model
can be found in Ref. [25] and references therein.

The pairwise inter-particle forces typically used are based on the overlap and the relative motion of particles. This might
not be sufficient to account for the inhomogeneous stress distribution inside the particles and possible multi-contact effects.
However, this simplifying assumption enables us to study larger samples of particles with a minimal complexity of the con-
tact properties, taking into account phenomena like non-linear contact elasticity, plastic deformation, and adhesion as well
as friction, rolling resistance, and torsion resistance. In the following, we will neglect rolling and torsion resistance however.

2.1. Normal contact forces

Realistic modeling of the deformations of two particles in contact with each other is already quite challenging. The
description of many-body systems where each particle can have multiple contacts is extremely complex. We therefore as-
sume our particles to be non-deformable perfect spheres. They shall interact only when in contact. We call two particles in
contact when the distance of their centers of mass is less than the sum of their radii. For two spherical particles i and j in
contact, with radii ai and aj, respectively, we define their overlap
d ¼ ðai þ ajÞ � ðri � rjÞ � n > 0 ð1Þ
with the unit vector n :¼ nij :¼ ðri � rjÞ=jri � rjj pointing from j to i. ri and rj denote the position of particles i and j,
respectively.

The force on particle i, labelled f i, is modelled to depend pairwise on all particles j with which particle i is in contact,
f i ¼

P
j f c

ijj, where f c
ijj is the force on particle i exerted by particle j at contact c. The force f c

ijj can be decomposed into a normal
and a tangential part, f c

ijj ¼ f n
ijjnþ f t

ijjt, where n � t ¼ 0.
To model the force f c

ijj we use an adhesive, elasto-plastic, history-dependent contact law that depends on three variables
only and is described in more detail in Ref. [25]: the force between two spheres is modelled to depend only on their overlap
d, the relative velocity of their surfaces, and the maximum overlap dmax this contact has suffered in the past. We will leave out
the index ijj from now on.

For the normal force f n we apply a modified spring-dashpot model: the dashpot part is, as usual, a viscous damping force
that depends on the normal component of the relative velocity. The spring ‘‘constant” k, however, is only temporarily
constant and depends on the history of the contact, changing the force from linear in the overlap to piecewise linear: the
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Fig. 1. Spring part of the normal component of the contact force f n, i.e. the part that is a function of the overlap d. (The viscous normal forces are not
included in this plot.) k1, k2, kc , and dmaterial are material constants. dmax is the maximum overlap this contact has suffered in the past and accounts for the
history dependence of the contact law. d� is the (history dependent) overlap at which the force becomes zero when loading or unloading with the current
(history dependent) stiffness k� . df is the overlap at which the force vanishes when the stiffness constant k2 is used (at large overlaps).
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repulsive force during initial loading is governed by the initial loading stiffness constant k1 (see Fig. 1). When the contact is
unloaded the maximal overlap dmax is kept in memory as a history variable. The forces during un- and re-loading can be
either repulsive or attractive and are determined using a linear interpolation k� between the initial loading stiffness constant
k1 and the maximal elastic stiffness constant k2. For overlaps greater than dmaterial the stiffness constant k2 is used. When re-
loading starts after unloading dmax is reset to the then current value of d and it is subsequently increased again during load-
ing. If a contact breaks dmax is set to zero. Each contact can be unloaded into the attractive regime with the current stiffness
k�. This models adhesion. The attractive forces are limited by �kcd, with the adhesion ‘‘stiffness” constant kc.

2.2. Tangential contact force laws

In the tangential direction, the forces and torques depend on the tangential displacement and the relative rotations of the
particle surfaces. Dynamic (sliding) and static friction depend on the tangential component of the relative velocity of the con-
tact points,
v t ¼ v ij � nðn � v ijÞ; where v ij ¼ v i � v j þ a0in� xi þ a0jn� xj ð2Þ
is the relative velocity of the particle surfaces at contact. Here a0a ¼ aa � d=2, for a ¼ i; j, is the corrected radius relative to the
contact point. v i, v j, xi, and xj are the linear and rotational velocities of particles i and j, respectively.

Tangential forces f t acting on the contacts are modelled to be proportional to the accumulated sliding distance of the contact
points along each other with a (tangential) stiffness constant kt, i.e. f t ¼ kt

R
v t dt, where v t is the tangential component of the

relative velocity of the contact point. Including also a viscous damping constant, ct, the tangential force is limited by the product
of the normal force and the contact friction coefficient l, according to Coulomb’s law, f t

6 lf n. For more details see Ref. [25].

2.3. Background friction

Viscous dissipation as mentioned above takes place localized in a two-particle contact only. In the bulk material, where
many particles are in contact with each other, this dissipation mode is very inefficient for long-wavelength cooperative
modes of motion, especially when linear force laws are involved [55]. Therefore, an additional damping with the background
is introduced, such that the total force f i and torque qi on particle i are given by
f i ¼
X

j

f nnþ f tt
� �

� cbv i and qi ¼
X

j

qfriction � cbra
2
i xi; ð3Þ
where the sums take into account all contact partners j of particle i, and cb and cbr are the (artificial) background damping
viscosities assigned to the translational and rotational degrees of freedom, respectively. The viscosities can be seen as orig-
inating from a viscous inter-particle medium and enhance the damping in the spirit of a rapid relaxation and equilibration.
Note that the effect of cb and cbr should be checked for each set of parameters: it should be small in order to exclude artificial
over-damping.

2.4. Contact model parameters

In the following, we measure lengths in units of millimeters (mm), masses in milligrams (mg) and times in units of one
hundred microseconds (100 ls). Note that only a few parameters have to be specified with dimensions, while the others are
expressed as dimensionless ratios in Table 1.



Table 1
Microscopic material parameters used (third column), if not explicitly specified. The fourth column contains these values in the dimensional units, i.e., when
the time-, length-, and mass-units are 100 ls, mm, and mg, respectively. Column five contains the parameters in SI-units. Energy, velocity, force, acceleration,
and stress have to be scaled with factors of 10�4, 10�1, 10�1, 105, and 105, respectively, for a transition from reduced to SI-units.

Property Symbol Value Dimensional units SI units

Time unit tu 1 100 ls 10�4 s
Length unit xu 1 1 mm 10�3 m
Mass unit mu 1 1 mg 10�6 kg

Particle radius a0 0.005 5 lm 5� 10�6 m
Material density q 2 2 mg/mm3 2000 kg/m3

Max. loading/unloading stiffness k2 5 5 mg/ð100 lsÞ2 5� 102 kg=s2

Initial loading stiffness k1=k2 0:5
Adhesion ‘‘stiffness” kc=k2 0:2
Friction stiffness kt=k2 0:2

Coulomb friction coefficient l ¼ ld ¼ ls 1
Dynamic to static friction ratio /d ¼ ld=ls 1

Normal viscosity c ¼ cn 5� 10�5 5� 10�5 mg=100 ls 5� 10�7 kg=s
Tangential viscosity ct=c 0:2
Background viscosity cb=c 4:0
Background viscous torque cbr=c 1:0
Fluid overlap /f 0:05
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A maximal stiffness constant of k2 ¼ 5, as used in our simulations, corresponds to a typical contact duration (half-period)
tc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð2kÞ

p
� 6:5� 10�4, for a normal collision of a large and a small particle with c ¼ 0. Accordingly, an integration time-

step of tMD ¼ 5� 10�6 is used in order to allow for a ‘‘safe” integration of the equations of motion. Note that not only the
normal ‘‘eigenfrequency” but also the eigenfrequencies for the rotational degrees of freedom have to be considered, as well
as the viscous response times tc � m=c. All of the (inverse) eigenfrequencies should be considerably larger than tMD, while
the viscous response times should be even larger, so that tc > tc � tMD. A more detailed discussion of all the effects due
to the interplay between the model parameters and the related times is, however, far from the scope of this paper. Details
can be found in Ref. [25] and references therein.
3. Tablet preparation and material failure test

3.1. Tablet preparation

Having introduced the model and its parameters in the last section here we describe the experimental idea and the steps
of our simulations. We prepare a ‘‘tablet” (granule) consisting of primary particles that behave according to the contact force
laws mentioned above. A four-step process is applied:

� creation of a loose initial sample,
� pressure sintering by isotropic compression,
� removal of the pressure,
� relaxation.

On the resulting unconfined ‘‘tablet”, or material sample, tests can be performed, e.g. controlled compression or tensile
tests as well as sound wave propagation tests. Care has to be taken to perform first the preparation and later the tests in
a symmetric way (see below) to avoid artefacts.
3.1.1. Initial sample
Before sintering the first step is to create a loose configuration of N ¼ 1728 spherical (granular) particles with a Gaussian

distribution of radii with average a ¼ 0:005. The tails of the distribution are cut-off at 0:003 and 0:0075 to ensure that all
particles are comparable in size [56], i.e. neither too large nor too small particles are desired. For the situations presented

in this paper, the half-width of the distribution is wa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha2i � hai2

q
¼ 0:0007213. In addition, the initial velocities are drawn

from a Gaussian distribution in each direction.
In the initial preparation stage the particles are arranged on a regular cubic lattice with wide spacing so that particles are

not in contact – neither with each other nor with a wall – and have space to move and become disordered. Then the system is
compressed with a pressure of p1 ¼ 0:5 to create a loose initial packing with a coordination number C ¼ 5:89 and volume
fraction, m ¼

P
iVðaiÞ=V ¼ 0:607, with the particle volume VðaiÞ ¼ ð4=3Þpa3

i .
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3.1.2. Pressure sintering
The second step is pressure sintering: the system is compressed by keeping one wall in each spatial direction fixed while

applying a constant pressure of ps ¼ 10 to the other (three) walls. During compression, the particles are frictional with a fric-
tion coefficient l ¼ 1, and have zero adhesion amongst each other, i.e. kc ¼ 0. Four of the six walls are frictionless lwall ¼ 0
and cohesionless (kwall

c ¼ 0). The remaining two (opposing) walls are already prepared for the tests to come. These two walls
define the uni-axial direction and are strongly adhesive, with kwall

c =k2 ¼ 20, so that the sample sticks to them, while all other
walls can be easily removed in the third step. The wall adhesion has no visible effect here, since the sample is strongly con-
fined. In contrast, friction has an effect, i.e. friction with the walls would hinder the pressure to be transferred completely to
its opposite wall. Frictional walls carry part of the load – an effect that is known since the early work of Janssen [57,58].

During the compression the kinetic energy first increases and then decreases, see the left graph of Fig. 2, due to the energy
dissipation in the system. We keep the pressure constant until the kinetic energy has very well reached a small constant
value, within fluctuations, determined only by the numerical accuracy.

The right graph of Fig. 2 shows the mean coordination number as a function of time. The number of contacts increases
during pressure sintering, overshoots, and finally settles to a constant value of C � 7:17. Not surprisingly, a rather high vol-
ume fraction, m ¼ 0:6754, is reached during the pressure sintering. (After stress-relaxation (see below), these values decrease
considerably to m � 0:626	 0:005 and C � 6:2	 0:2, depending on the material parameters used.)

3.1.3. Pressure release
Using this pressure sintered sample, the third step is to remove the pressure from the walls. Before we do so both kc and l

are set to the desired values (kc=k2 ¼ 0:2 or 1:0 and l ¼ 1:0; 0:1; or 0). The combination of material parameters and their
identification codes are summarized in Table 2.

The control pressure is smoothly released from the walls in a co-sinusoidal way, starting from its sintering value,
ps ¼ 10, down to a residual value, p0, that is five orders of magnitude lower, i.e. p0=ps ¼ 10�5. The half-period of the
co-sinusoidal pressure release is t0 ¼ 12:5, but relaxation is continued further until the kinetic energy is dissipated and
reaches tiny values (see Fig. 3). The small residual pressure keeps single particles from leaving the sample and also keeps
the walls in place. This is important in order to not spoil the efficiency of our linked cell algorithm, where the cell size is a
fraction of the system size between the walls. However, this confining stress p0 is not big enough to affect the dynamics of
the tests performed, it is just a convenient way to keep the walls rather close to the sample. (p0=ps ¼ 10�3 leads to very
similar results.)

There are qualitative differences for the short time behaviour between the samples A and B on the one hand and samples
C–F on the other hand. In the latter samples the friction coefficient is suddenly reduced from l ¼ 1 to smaller values just
before the walls are removed. As an example, in Fig. 3 samples A and C are compared, which have l ¼ 1, and 0:1, respec-
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Fig. 2. Kinetic energy Ekin (left) and coordination number [number of contacts per particle] (right) as a function of time t during isotropic pressure sintering
with final pressure ps ¼ 10. Here the particle contacts are adhesionless, kc ¼ 0, while the other parameters are given in Table 1.

Table 2
Adhesion and friction parameters used during stress-release and for the further tests of the samples A–F. The densities and coordination numbers are realized
after relaxation, after stress-release, before the subsequent compression and/or sound tests.

Type A B C D E F

kc 1 5 1 5 1 5
l 1 1 0.1 0.1 0 0

m 0.6270 0.6280 0.6296 0.6294 0.6273 0.6216
C 6.097 6.183 6.020 6.191 6.122 6.454
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Fig. 3. Kinetic energy Ekin (top) and coordination number [number of contacts per particle] (bottom) as a function of time t during stress-removal from the
walls and subsequent relaxation. The material parameters are given in Table 1, for sample A (left), with l ¼ 1, while the friction is reduced to l ¼ 0:1 for
sample C (right). The markers (top) show the changes discussed in the text at times 12.5, 200, and 250.
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tively. The kinetic energy of sample C increases instantaneously due to the ‘‘failure” of several contacts and subsequent dy-
namic reorganization. During this reorganization also the coordination number, see bottom panels in Fig. 3, increases
slightly, as well as the density (data not shown). For sample E, the increase in kinetic energy, coordination number and den-
sity is larger, since the friction is reduced to an even smaller value l ¼ 0 (data not shown).

A comparison of samples B, D, and F leads to qualitatively similar observations as did the comparison of samples A, C, and
E discussed above. The sudden reduction of friction has the same effect when kc ¼ 5 instead of kc ¼ 1. The increase in adhe-
sion from kc ¼ 1 to kc ¼ 5 does not show a strong effect initially. Only for larger times, i.e. lower pressure, the effect of con-
tact adhesion manifests itself in slightly shorter relaxation times. All densities are very similar, only the coordination number
is systematically slightly larger for stronger adhesion.

3.1.4. Final relaxation
The fourth preparation step is the final relaxation of the system. This is done in three substeps. First, immediately after the

control pressure on the wall has reached its low residual value, the system is relaxed further until time tr1 ¼ 200 with three
fixed walls and three walls with the residual pressure reached at the end of the wall removal procedure. Second, after the
kinetic energy has reached a small value, within fluctuations, for a long time, the system is further relaxed and symmetrized
with the same pressure of 10�4 applied from all sides for another time interval of tr2 ¼ 50. In the final relaxation step, again a
time interval of tr3 ¼ 50, the two walls in the x-direction are fixed and the other four walls are kept at the residual pressure.
We now have an unconfined sample with fixed walls in the x-direction and negligible stresses in all directions. The tests to
be performed are uni-axially deforming the walls in the x-direction only.

The prepared sample can now be used for all sorts of further tests. In this paper we will show compression tests in Section
3.2 and sound wave propagation on different samples in Section 4, as sketched in Fig. 4.
3.2. Compression test

In this section we describe an uni-axial unconfined compression test, starting from the final configuration of sample A
from the previous subsection. This test resembles a direct measurement of the unconfined yield-strength, as applied in
mechanical engineering and particle technology, see [59]. However, we apply the strain in several rather small steps. After
each small step we relax the system in the compressed state, i.e. we run the simulation for a while without changing the
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pressure (y- and z-directions) on and positions (x-direction) of the walls. We later perform tests on these ‘‘relaxed” states.
This must not be confused with a test performed after the stress has been removed.

Instead of applying the target-strain of �max ¼ 0:0217 in one sweep, the deformation is divided into 10 steps, with
�s � 0:00217 each (measured relative to the initial system size). This leads to states with �m ¼ m�s, with integer
m ¼ 0;1;2; . . . ;10. During each of the 10 strain-steps, the system is compressed in a co-sinusoidal way for one half-period,
during a time interval of t� ¼ 0:5, and then relaxed for a time interval of t�r ¼ 4:5. Note that the results are rate dependent
(where the rate is proportional to 1=t�). A low enough rate has to be chosen in order to stay in the quasi-static regime. Fig. 5
gives a comparison with a 10 times higher rate (left graph). A four times higher rate does not change qualitatively the stress–
strain behaviour (data not shown here). The ‘‘relaxed” sample (which is still under anisotropic pressure) is then further de-
formed and relaxed and this is repeated again and again. The reason for this intermediate relaxation is that we want to per-
form sound wave propagation tests on well-defined ‘‘relaxed”, static samples after those have suffered from different levels
of deformation.

The stress–strain diagram of these compression tests are shown in Fig. 5. Table 3 summarizes the strains, coordination
numbers, and volume fractions for all �m investigated. The initial stress–strain relation is very close to linear, with a slope
of D ¼ or=o� ¼ 225:6. The maximal stress is approximately 1/4 of the previously applied sintering pressure ps. Additionally,
we see that relaxing the system in the elastic regime, at intermediate strains of �1—4, leads to samples very close to the elastic
branch. Thus up to a strain of about 1% the system behaves almost like an elastic solid.

At larger deformation, �5, the sample starts to fail: here the stress is close to its maximum and during the relaxation the
stress decreases, i.e. we have left the elastic regime. The coordination number and density decrease considerably when the
sample starts to fail. At the next strain levels, �6 and �7, the stress remains large but the stress decreases more and more
during relaxation. At �8 � 0:017 the system fails and becomes almost fluid-like with an enormous decay of stress during
relaxation. Also for later compression steps the stress is significantly reduced, relative to the maximum, during the relaxation
process, though it never reaches zero.
Fig. 5. Normalized axial stress r=r0 plotted against the axial strain � from a step-wise uni-axial compression test. The reference stress, r0 ¼ k2=a, is used to
non-dimensionalize the stress. The left graph shows the results for a rate 10 times faster than the one used in the following (right graph). The points
indicate the configurations on which sound propagation tests are performed in Section 4.



Table 3
Strain steps �m and corresponding coordination numbers and volume fractions. The round-off error for the given values is 	10�3.

Type �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

� (%) 0 0.22 0.43 0.65 0.87 1.09 1.30 1.52 1.74 1.95 2.17
C 6.097 6.098 6.093 6.090 6.086 6.001 5.810 5.592 4.679 4.612 4.556
m 0.627 0.627 0.627 0.624 0.620 0.613 0.594 0.578 0.546 0.537 0.526
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4. Sound wave propagation tests

The goal of this section is to characterize how the propagation of sound waves is influenced by, on the one hand, the
‘‘microscopic” parameters such as the inter-particle cohesion and friction and, on the other hand, the material state (uncom-
pressed, uni-axially compressed in the elastic regime, close to failure, or in the fluidized softening regime). This is done by
analyzing the wave propagation, phase velocities, damping, and Fourier spectra of the sound waves.

The ‘‘microscopic” inter-particle interaction laws (material properties) have an influence on the propagation of sound.
Therefore, we first probe packings with different ‘‘microscopic” adhesion and friction parameters. When a tablet undergoes
strain, both microscopic (contact scale) and macroscopic (multi-grain scale) changes occur in the structure. In order to inves-
tigate the change of the macroscopic material properties due to these reorganisations we probe the packing at various exter-
nally applied uni-axial strains, corresponding to the different regimes mentioned above. Note that a piecewise linear contact
law with history-dependent stiffness (see Section 2) allows to decouple the non-linearity of the contact forces (e.g. as in the
case of the Hertz contact model) from the influence of reorganisations and opening or closing of contacts.

For the sound propagation tests we start with the tablets prepared as described in Section 3. The tablet has two fixed
walls in the x-direction and virtually free boundary conditions in the other two directions. Now a signal is sent through
the sample by applying a time-dependent variation of the position (according to the desired signal) to one of the two walls,
see left sketch of Fig. 4. After some time the opposite wall will feel a stress variation which we analyze and interpret, right
sketch of Fig. 4. The wave form is a full period of a co-sine, moving the wall in and out, with an amplitude, A ¼ 10�7 and a
time period T ¼ 3� 10�3. This stress amplitude is much smaller than the maximum stress in Fig. 5.

4.1. Influence of cohesion and friction on sound propagation

In this subsection the influence of the microscopic parameters adhesion and friction on the sound propagation of an
uncompressed tablet is studied. In Table 2 the values used for inter-particle adhesion kc and friction l are given along with
the sample names A, B, C, D, E, or F. In Fig. 6, the source (left) and receiver (right) signals (stress at the wall) are plotted versus
time. Table 4 gives the wave velocities, calculated for different reference points as specified below, and the damping ratios
between the source and receiver signals.

Wave velocities are deduced from the time of flight (TOF). Therefore a reference point is chosen at the maximum of the
peak (leading to the velocity vm), at 5% of that maximum (v5), at 10% of that maximum (v10) or finally when the signal
reaches for the first time zero amplitude after the peak (v0). The ratio of the distance between the two walls (source and
receiver) and the time difference between the two signals gives the desired wave velocities. Note that since the medium
is dispersive, the calculated velocities are an approximation of the group velocity for the range of propagating frequencies.
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Fig. 6. Stress variation rðtÞ � rð0Þ as function of time t at the source (left) and receiver (right) walls for the samples prepared in Section 3.1. Here rð0Þ
denotes the stress at the wall just before the sound propagation test started. Note the different vertical axes. The signal for sample F has been cut-off as it
oscillates strongly later on.



Table 4
Velocities v as defined in the main text and damping rd

Type A B C D E F

v5 19.60 19.63 19.60 19.69 20.23 20.24
v10 18.89 18.94 18.91 18.99 19.52 19.55
vm 15.99 16.05 15.95 16.07 16.62 16.70
v0 14.94 15.04 14.84 15.03 15.71 15.86
rd 2.49 2.37 2.65 2.35 10.59 7.67
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The damping ratios rd are calculated by dividing the maximum of the peak of the source signal by the corresponding peak
of the receiver signal. Those ratios depend on the distance between the two walls and on the dispersion.

The results show a clear difference between the specimens with friction (A, B, C, and D) and the frictionless cases (E and F)
concerning both damping and velocities. The damping (as defined above) is significantly stronger for cases E and F. This may
be due to the fact that friction strengthens the specimen and hence enhances the wave transmission, i.e. reduces damping in
accordance with previous results [28]. The strong reduction in the peak amplitude of the frictionless samples might also be
related to the different configuration structure of the samples. For the frictional specimens (A–D) the damping is lower for
higher adhesion (B and D). The same is observed for frictionless specimens, which means that stronger adhesion enhances
the wave transmission as well.

Concerning the velocities, for the same inter-particle adhesion, A, C and E as well as B, D and F, all velocities are system-
atically lower in the frictional cases (A–D) than in the frictionless samples (E and F). In a previous study [28] the velocity of
sound was higher in the frictional case, where identical samples were prepared without friction before activating the desired
friction coefficient. This is in contrast to our results, where all samples are different. However, a complex interplay between
frictional and cohesional effects might be the explanation for this unexpected result. Finally, when comparing specimens A
and C with specimens B and D, there is a slight increase of velocities with higher cohesion. The same is observed when com-
paring specimens E and F. This suggests again that adhesion increases the effective stiffness of the material and thus the
wave speed. The fact that adhesion increases the tensile strength was examined and reported in [25,26]. Note that the in-
crease of velocity is correlated with the increase of coordination number for increasing contact adhesion and thus depends
on the history of the sample.

From the power spectra, obtained by applying the Fourier transform to the time signals, the dispersive and filtering
behaviour of the system can be identified by the observed significant shift of the main frequency from about 330 down
to 150 (corresponding to 33 and 15 kHz in SI units), see Fig. 7. The granular, and hence inhomogeneous and discrete, nature
of the system leads to its dispersive behaviour. High frequencies are very sensitive to the details at the grain scale because
their wavelengths are small, and hence they travel more slowly and less far than lower frequencies. The latter ones are less
sensitive to the details at the grain scale because their wavelengths are much larger and average over many grains. Note that
the main frequency at around 330 comes from the chosen period for the wave form, T ¼ 3� 10�3, see the beginning of Sec-
tion 4. Besides the evidently strong damping of signals E and F, no further striking differences are observed for the different
specimens’ spectra. Even though there are differences in the power law tail of the spectra (data not shown), we could not
correlate those to the different parameters.

4.2. Uncompressed versus compressed states

In the following, the compressed specimen A (uni-axially, from both sides) is used. In that special direction the wall
movement is strain controlled and the other two directions are virtually free boundaries, see Section 3.2 for details. At each
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Fig. 7. Power spectrum from (left) source- and (right) receiver-signals, taken from the simulations in Fig. 6 in arbitrary units (a.u.). Only signals E and F
behave differently from the others, reflecting their higher damping rates (see right graph).



-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0  0.005  0.01  0.015  0.02

St
re

ss
 v

ar
ia

tio
n

t

ε3ε7

ε0ε1ε2ε3ε4ε5ε6ε7ε8ε9ε10

-0.001

-0.0005

 0

 0.0005

 0.001

 0  0.01 0.005  0.015  0.02

St
re

ss
 v

ar
ia

tio
n

t

ε3

ε7

ε0ε1ε2ε3ε4ε5ε6ε7ε8ε9ε10

Fig. 8. Stress variation rðtÞ � rð0Þ as function of time t at the source and receiver walls, where the �3 and �7 signals display a different coda. Note the
different vertical axes.

Table 5
Velocities, v, as defined in the main text and damping rd

Type �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

v5 19.60 19.59 19.60 20.00 19.58 19.56 19.55 19.45 19.26 19.24 19.14
v10 18.89 18.89 18.89 19.31 18.88 18.87 18.85 18.74 18.55 18.52 18.45
vm 15.99 16.01 16.03 16.13 16.05 16.06 16.04 15.84 15.66 15.58 15.54
v0 14.94 14.99 15.05 15.22 15.10 15.14 15.14 14.81 14.56 14.46 14.39
rd 2.49 2.47 2.47 3.47 2.37 2.37 2.45 2.76 4.21 4.68 5.11
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Fig. 9. Power spectra from source- and receiver-signals, taken from the simulations in Fig. 8 in arbitrary units (a.u.).
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step of the compression test, after relaxation (see Fig. 5) a sound wave is sent through the system the same way as in the
previous subsection. Fig. 8 shows the signals at the source and receiver walls.

Regarding vm and v0, see Table 5, the velocities seem to increase a little as the system is further compressed until state �3.
Then they slightly decrease until state �6 and finally the decay is stronger until the last state �10. This variation correlates
with the three regimes observed on the stress–strain curve, see Fig. 5, i.e. first the close-to-linear regime, second, the
start-of-failure regime, and finally the critical-flow regime. The damping strongly increases for the last steps, �8 to �10, as
the sample is not really a solid any more. These observations correlate with the given coordination numbers C and the den-
sity m, see Table 3. Similar observations are made concerning the power spectra of those signals (see Fig. 9) noting a stronger
damping at steps �8 to �10. Additional studies are needed to determine whether the sound pulse method could allow for a
sensitive material state characterization at all.

5. Conclusions

We have performed particle simulations of sound propagation in isotropically pressure sintered powder samples at very
small confining stress. Using a recently proposed piecewise linear contact model for particle–particle interactions we probed
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different values of friction and adhesion during preparation. In particular, we applied a P-wave on one end of the sample and
measured and analyzed the signal on the opposing receiver wall. Surprisingly we found only very weak differences except for
the frictionless case, where the velocity of sound was higher and the damping was stronger. Even though the samples were
prepared using the same preparation protocol they evolved to different initial configurations due to different values of the
contact parameters. The material behaviour is history dependent but mostly determined by the sintering pressure ps rather
than by those material parameters varied here.

In addition, one of the samples was subjected to strain-controlled uni-axial unconfined compression and the sound prop-
agation properties were studied at various levels of strain: in the elastic regime, at the onset of and during failure, and in the
softening and flowing regimes. Even though in the elastic regime we found astonishingly little variation in the wave prop-
agation velocity as a function of the strain, one particular sample behaved qualitatively differently. In the softening regime
all samples were unstable even though the amplitude of the probing pulse was 100 times smaller than the typical particle–
particle overlap.

Having observed rather small differences between the different uni-axial strain states, the originally expected, strong
dependence of sound propagation on the uni-axial anisotropic stress states was not observed.

The quantitative tuning of the DEM model to real experimental data remains a challenge for future research. The results
presented here have units that are not supposed to mimic a real material. Some tuning can be done by rescaling, but a real
fine-adjustment will require a more systematic study of other contact model parameters.

Acknowledgements

Valuable discussions with J. Tomas, A. Suiker, L. Brendel, and W. Mulder are appreciated. This study was supported by
the Delft Centre for Materials Self-Healing program, the research institute IMPACT of the University of Twente, and the
Stichting voor Fundamenteel Onderzoek der Materie (FOM), financially supported by the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), through the FOM-SHELL program and the Granular Matter research program.

References

[1] Jaeger HM, Liu C, Nagel SR. Relaxation at the angle of repose. Phys Rev Lett 1989;62(1):40–3.
[2] Jaeger HM, Liu C, Nagel SR, Witten TA. Friction in granular flows. Europhys Lett 1990;11(7):619–24.
[3] Jaeger HM, Nagel SR. Physics of the granular state. Science 1992;255:1523.
[4] Behringer RP. The dynamics of flowing sand. Nonlinear Sci Today 1993;3:1–15.
[5] Herrmann HJ, Hovi J-P, Luding S, editors. Physics of dry granular media. NATO ASI Series E, vol. 350. Dordrecht: Kluwer Academic Publishers; 1998.
[6] Goldhirsch I, Zanetti G. Clustering instability in dissipative gases. Phys Rev Lett 1993;70(11):1619–22.
[7] Behringer RP, Baxter GW. Pattern formation and complexity in granular flow. In: Mehta A, editor. Granular matter. New York: Springer-Verlag; 1994.

p. 85.
[8] Luding S, Clément E, Blumen A, Rajchenbach J, Duran J. Studies of columns of beads under external vibrations. Phys Rev E 1994;49(2):1634.
[9] Sela N, Goldhirsch I. Hydrodynamic equations for rapid flows of smooth inelastic spheres to Burnett order. J Fluid Mech 1998;361:41–74.

[10] Herbst O, Huthmann M, Zippelius A. Dynamics of inelastically colliding spheres with Coulomb friction: Relaxation of translational and rotational
energy. Granular Mat 2000;2(4):211–9.

[11] Herbst O, Cafiero R, Zippelius A, Herrmann HJ, Luding S. A driven two-dimensional granular gas with Coulomb friction. Phys Fluids 2005;17:107102.
[12] Santos A. Does the Chapmanenskog expansion for sheared granular gases converge? Phys Rev Lett 2008;100:078003.
[13] Tomas J. Fundamentals of cohesive powder consolidation and flow. Granular Mat 2004;6(2/3):75–86.
[14] Castellanos A. The relationship between attractive interparticle forces and bulk behavior in dry and uncharged fine powders. Adv Phys

2005;54(4):263–376.
[15] Luding S. Shear flow modeling of cohesive and frictional fine powder. Powder Technol 2005;158:45–50.
[16] Luding S. Anisotropy in cohesive, frictional granular media. J Phys: Condens Mat 2005;17:S2623–40.
[17] Richefeu V, Radjai F, El Youssoufi MS. Stress transmission in wet granular materials. Eur Phys J E 2006;21(4):359–69.
[18] Thornton C, Yin KK. Impact of elastic spheres with and without adhesion. Powder Technol 1991;65:153.
[19] Thornton C, Yin KK, Adams MJ. Numerical simulation of the impact fracture and fragmentation of agglomerates. J Phys D: Appl Phys 1996;29:424–35.
[20] Kafui KD, Thornton C. Numerical simulations of impact breakage of spherical crystalline agglomerate. Powder Technol 2000;109:113–32.
[21] Thornton C, Antony SJ. Quasi-static deformation of a soft particle system. Powder Technol 2000;109(1–3):179–91.
[22] Luding S, Manetsberger K, Muellers J. A discrete model for long time sintering. J Mech Phys Solids 2005;53(2):455–91.
[23] Luding S. About contact force-laws for cohesive frictional materials in 2d and 3d. In: Walzel P, Linz S, Krülle C, Grochowski R, editors. Behavior of

granular media. Shaker Verlag; 2006. p. 137–47 [Band 9, Schriftenreihe Mechanische Verfahrenstechnik, ISBN 3-8322-5524-9].
[24] Luding S. Contact models for very loose granular materials. In: Eberhard P, editor. Symposium on multiscale problems in multibody system contacts.

IUTAM Bookseries, vol. 1. Dordrecht, The Netherlands: Springer; 2007. p. 135–50.
[25] Luding S. Cohesive frictional powders: contact models for tension. Granular Mat 2008;10(4):235–46.
[26] Luding S, Suiker A. Self-healing of damaged particulate materials through sintering. Philos Mag 2008, in press.
[27] Mouraille O, Luding S. Sound propagation in dense, frictional granular materials. In: Garcia-Rojo R, Herrmann HJ, McNamara S, editors. Powders and

grains. Leiden: A.A. Balkema; 2005. p. 319.
[28] Mouraille O, Mulder WA, Luding S. Sound wave acceleration in granular materials. J Stat Mech 2006:P07023.
[29] Luding S. Granular media: information propagation. Nature 2005;435:159–60.
[30] Mouraille O, Luding S. Mechanic waves in sand: effect of polydispersity. In: Peukert W, editor. Partec 2007, CD proceeding; 2007.
[31] Mouraille O, Luding S. Sound wave propagation in weakly polydisperse granular materials. Ultrasonics 2008, in press. doi:10.1016/

j.ultras.2008.03.009.
[32] Jia X. Codalike multiple scattering of elastic waves in dense granular media. Phys Rev Lett 2004;93(15):154303.
[33] Jia X, Caroli C, Velicky B. Ultrasound propagation in externally stressed granular media. Phys Rev Lett 1999;82(9):1863.
[34] Hostler SR, Brennen CE. Pressure wave propagation in a shaken granular bed. Phys Rev E 2005;72:031304.
[35] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique 1979;29(1):47–65.
[36] Bashir YM, Goddard JD. A novel simulation method for the quasi-static mechanics of granular assemblages. J Rheol 1991;35(5):849–85.
[37] Thornton C. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 2000;50(1):43–53.

http://dx.doi.org/10.1016/j.ultras.2008.03.009
http://dx.doi.org/10.1016/j.ultras.2008.03.009


792 O. Mouraille et al. / Engineering Fracture Mechanics 76 (2009) 781–792
[38] Thornton C, Zhang L. A DEM comparison of different shear testing devices. In: Kishino Y, editor. Powders & grains 2001. Rotterdam: Balkema; 2001.
p. 183–90.

[39] Vermeer PA, Diebels S, Ehlers W, Herrmann HJ, Luding S, Ramm E, editors. Continuous and discontinuous modelling of cohesive frictional materials.
Lecture notes in physics, vol. 568. Berlin: Springer; 2001.

[40] Sadd MH, Adhikari G, Cardoso F. DEM simulation of wave propagation in granular materials. Powder Technol 2000;109(1–3):222–33.
[41] Liu C, Nagel SR. Sound in sand. Phys Rev Lett 1992;68(15):2301–4.
[42] Chang CS, Chao SJ, Chang Y. Estimates of elastic moduli for granular material with anisotropic random packing structure. Int J Solids Struct

1995;32(14):1989–2009.
[43] Shlivinski A, Langenberg KJ. Defect imaging with elastic waves in inhomogeneous-anisotropic materials with composite geometries. Ultrasonics

2007;46(1):89–104.
[44] Tai QM, Sadd MH. A discrete element study of the relationship of fabric to wave propagational behaviours in granular materials. Int J Numer Anal Meth

Geomech 1997;21(5):295–311.
[45] Tournat V, Castagnede B, Gusev V, Bequin P. Self-demodulation acoustic signatures for nonlinear propagation in glass beads. CR Mecaniques

2003;331(2):119–25.
[46] Nesterenko VF. Dynamics of heterogeneous materials. New York: Springer Verlag; 2001.
[47] Dejong N, Hoff L, Skotland T, Bom N. Absorption and scatter of encapsulated gas filled microspheres – theoretical considerations and some

measurements. Ultrasonics 1992;30(2):95–103.
[48] Vermeer PA, Ehlers W, Herrmann HJ, Ramm E, editors. Modelling of cohesive-frictional materials. Leiden, Netherlands: Balkema, Taylor & Francis;

2004. ISBN 04 1536 023 4.
[49] Agnolin I, Jenkins JT, Ragione LL. A continuum theory for a random array of identical, elastic, frictional disks. Mech Mater 2006;38(8–10):687–701.
[50] Tournat V. Private communication; 2007.
[51] Lätzel M, Luding S, Herrmann HJ, Howell DW, Behringer RP. Comparing simulation and experiment of a 2d granular Couette shear device. Eur Phys J E

2003;11(4):325–33.
[52] Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1987.
[53] Rapaport DC. The art of molecular dynamics simulation. Cambridge: Cambridge University Press; 1995.
[54] Pöschel T, Schwager T. Computational granular dynamics. Berlin: Springer; 2005.
[55] Luding S, Clément E, Blumen A, Rajchenbach J, Duran J. Anomalous energy dissipation in molecular dynamics simulations of grains: the ‘‘detachment

effect”. Phys Rev E 1994;50:4113.
[56] David CT, Rojo RG, Herrmann HJ, Luding S. Hysteresis and creep in powders and grains. In: Garcia-Rojo R, Herrmann HJ, McNamara S, editors. Powders

and grains 2005. Leiden, Netherlands: Balkema; 2005. p. 291–4.
[57] Janssen HA. Versuche über Getreidedruck in Silozellen. Zeitschr d Vereines deutscher Ingenieure 1895;39(35):1045–9.
[58] Sperl M. Experiments on corn pressure in silo cells Translation and comment of Janssen’s paper from 1895. Granular Mat 2006;8(2):59–65.
[59] Schwedes J. Review on testers for measuring flow properties of bulk solids. Granular Mat 2003;5(1):1–45.


	Sound propagation in isotropically and uni-axially compressed cohesive, frictional granular solids
	Introduction
	Discrete particle model
	Normal contact forces
	Tangential contact force laws
	Background friction
	Contact model parameters

	Tablet preparation and material failure test
	Tablet preparation
	Initial sample
	Pressure sintering
	Pressure release
	Final relaxation

	Compression test

	Sound wave propagation tests
	Influence of cohesion and friction on sound propagation
	Uncompressed versus compressed states

	Conclusions
	Acknowledgements
	References


