6,546 research outputs found

    Conditions for free magnetic monopoles in nanoscale square arrays of dipolar spin ice

    Full text link
    We study a modified frustrated dipolar array recently proposed by M\"{o}ller and Moessner [Phys. Rev. Lett. \textbf{96}, 237202 (2006)], which is based on an array manufactured lithographically by Wang \emph{et al.} [Nature (London) \textbf{439}, 303 (2006)] and consists of introducing a height offset hh between islands (dipoles) pointing along the two different lattice directions. The ground-states and excitations are studied as a function of hh. We have found, in qualitative agreement with the results of M\"{o}ller and Moessner, that the ground-state changes for h>h1h>h_{1}, where h1=0.444ah_{1}= 0.444a (aa is the lattice parameter or distance between islands). In addition, the excitations above the ground-state behave like magnetic poles but confined by a string, whose tension decreases as hh increases, in such a way that for h≈h1h\approx h_1 its value is around 20 times smaller than that for h=0h=0. The system exhibits an anisotropy in the sense that the string tension and magnetic charge depends significantly on the directions in which the monopoles are separated. In turn, the intensity of the magnetic charge abruptly changes when the monopoles are separated along the direction of the longest axis of the islands. Such a gap is attributed to the transition from the anti to the ferromagnetic ground-state when h=h1h=h_1.Comment: 6 pages, 7 figures. Published versio

    On topological spin excitations on a rigid torus

    Full text link
    We study Heisenberg model of classical spins lying on the toroidal support, whose internal and external radii are rr and RR, respectively. The isotropic regime is characterized by a fractional soliton solution. Whenever the torus size is very large, R→∞R\to\infty, its charge equals unity and the soliton effectively lies on an infinite cylinder. However, for R=0 the spherical geometry is recovered and we obtain that configuration and energy of a soliton lying on a sphere. Vortex-like configurations are also supported: in a ring torus (R>rR>r) such excitations present no core where energy could blow up. At the limit R→∞R\to\infty we are effectively describing it on an infinite cylinder, where the spins appear to be practically parallel to each other, yielding no net energy. On the other hand, in a horn torus (R=rR=r) a singular core takes place, while for R<rR<r (spindle torus) two such singularities appear. If RR is further diminished until vanish we recover vortex configuration on a sphere.Comment: 11 pages, 9 figure

    A new data reduction scheme to obtain the mode II fracture properties of Pinus Pinaster wood

    Get PDF
    In this work a numerical study of the End Notched Flexure (ENF) specimen was performed in order to obtain the mode II critical strain energy released rate (GIIc) of a Pinus pinaster wood in the RL crack propagation system. The analysis included interface finite elements and a progressive damage model based on indirect use of Fracture Mechanics. The difficulties in monitoring the crack length during an experimental ENF test and the inconvenience of performing separate tests in order to obtain the elastic properties are well known. To avoid these problems, a new data reduction scheme based on the equivalent crack concept was proposed and validated. This new data reduction scheme, the Compliance-Based Beam Method (CBBM), does not require crack measurements during ENF tests and additional tests to obtain elastic properties.FCT - POCTI/EME/45573/200

    Finite element analysis of the ECT test on mode III interlaminar fracture of carbon-epoxy composite laminates

    Get PDF
    In this work a parametric study of the Edge Crack Torsion (ECT) specimen was performed in order to maximize the mode III component (GIII) of the strain energy release rate for carbon-epoxy laminates. A three-dimensional finite element analysis of the ECT test was conducted considering a [90/0/(+45/-45)2/(-45/+45)2/0/90]S lay-up. The main objective was to define an adequate geometry to obtain an almost pure mode III at crack front. The geometrical parameters studied were specimen dimensions, distance between pins and size of the initial crack. The numerical results demonstrated that the ratio between the specimen length and the initial crack length had a significant effect on the strain energy release rate distributions. In almost all of the tested configurations, a mode II component occurred near the edges but it did not interfere significantly with the dominant mode III state.FCT - POCTI/EME/45573/200

    Magnetic monopole and string excitations in a two-dimensional spin ice

    Full text link
    We study the magnetic excitations of a square lattice spin-ice recently produced in an artificial form, as an array of nanoscale magnets. Our analysis, based upon the dipolar interaction between the nanomagnetic islands, correctly reproduces the ground-state observed experimentally. In addition, we find magnetic monopole-like excitations effectively interacting by means of the usual Coulombic plus a linear confining potential, the latter being related to a string-like excitation binding the monopoles pairs, what indicates that the fractionalization of magnetic dipoles may not be so easy in two dimensions. These findings contrast this material with the three-dimensional analogue, where such monopoles experience only the Coulombic interaction. We discuss, however, two entropic effects that affect the monopole interactions: firstly, the string configurational entropy may loose the string tension and then, free magnetic monopoles should also be found in lower dimensional spin ices; secondly, in contrast to the string configurational entropy, an entropically driven Coulomb force, which increases with temperature, has the opposite effect of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009
    • 

    corecore