6 research outputs found

    The first IEEE workshop on the Future of Research Curation and Research Reproducibility

    Full text link
    This report describes perspectives from the Workshop on the Future of Research Curation and Research Reproducibility that was collaboratively sponsored by the U.S. National Science Foundation (NSF) and IEEE (Institute of Electrical and Electronics Engineers) in November 2016. The workshop brought together stakeholders including researchers, funders, and notably, leading science, technology, engineering, and mathematics (STEM) publishers. The overarching objective was a deep dive into new kinds of research products and how the costs of creation and curation of these products can be sustainably borne by the agencies, publishers, and researcher communities that were represented by workshop participants.National Science Foundation Award #164101

    [president's MESSAGE] Lend an ear–Or Was That Bend an Ear?

    No full text

    Rank 1 Weighted Factorization for 3D Structure Recovery: Algorithms and Performance Analysis

    No full text
    The paper describes the rank 1 weighted factorization solution to the structure from motion problem. This method recovers the 3D structure from the factorization of a data matrix that is rank 1 rather than rank 3. This matrix collects the estimates of the 2D motions of a set of feature points of the rigid object. These estimates are weighted by the inverse of the estimates error standard deviation so that the 2D motion estimates for "sharper" features, which are usually well-estimated, are given more weight, while the noisier motion estimates for "smoother" features are weighted less. We analyze the performance of the rank 1 weighted factorization algorithm to determine what are the most suitable 3D shapes or the best 3D motions to recover the 3D structure of a rigid object from the 2D motions of the features. Our approach is developed for the orthographic camera model. It avoids expensive singular value decompositions by using the power method and is suitable to handledense sets of feature points and long video sequences. Experimental studies with synthetic and real data illustrate the good performance of our approach

    The Internet of Things: Secure Distributed Inference

    No full text

    Graph Signal Processing: History, development, impact, and outlook

    No full text
    Signal processing (SP) excels at analyzing, processing, and inferring information defined over regular (first continuous, later discrete) domains such as time or space. Indeed, the last 75 years have shown how SP has made an impact in areas such as communications, acoustics, sensing, image processing, and control, to name a few. With the digitalization of the modern world and the increasing pervasiveness of data-collection mechanisms, information of interest in current applications oftentimes arises in non-Euclidean, irregular domains. Graph SP (GSP) generalizes SP tasks to signals living on non-Euclidean domains whose structure can be captured by a weighted graph. Graphs are versatile, able to model irregular interactions, easy to interpret, and endowed with a corpus of mathematical results, rendering them natural candidates to serve as the basis for a theory of processing signals in more irregular domains. Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Signal Processing System

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore