12 research outputs found

    SCALABLE MULTI-HOP DATA DISSEMINATION IN VEHICULAR AD HOC NETWORKS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio channel bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid changes in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate traffic density, so as to manage data dissemination accordingly. In this dissertation, we specifically aim at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    Centralized simulated annealing for alleviating vehicular congestion in smart cities

    Get PDF
    Vehicular traffic congestion is a serious problem arising in many cities around the world, due to the increasing number of vehicles utilizing roads of a limited capacity. Often the congestion has a considerable influence on the travel time, travel distance, fuel consumption and air pollution. This paper proposes a novel dynamic centralized simulated annealing based approach for finding optimal vehicle routes using a VIKOR type of cost function. Five attributes: the average travel speed of the traffic, vehicles density, roads width, road traffic signals and the roads' length are utilized by the proposed approach to find the optimal paths. The average travel speed and vehicles density values can be obtained from the sensors deployed in smart cities and communicated to vehicles and roadside communication units via vehicular ad hoc networks. The performance of the proposed algorithm is compared with four other algorithms, over two test scenarios: Birmingham and Turin city centres. These show the proposed method improves traffic efficiency in the presence of congestion by an overall average of 24.05%, 48.88% and 36.89% in terms of travel time, fuel consumption and CO2 emission, respectively, for a test scenario from Birmingham city in the UK. Additionally, similar performance patterns are achieved for the a test with data from Turin, Italy. Document type: Articl

    WASEF: Web Acceleration Solutions Evaluation Framework

    Full text link
    The World Wide Web has become increasingly complex in recent years. This complexity severely affects users in the developing regions due to slow cellular data connectivity and usage of low-end smartphone devices. Existing solutions to simplify the Web are generally evaluated using several different metrics and settings, which hinders the comparison of these solutions against each other. Hence, it is difficult to select the appropriate solution for a specific context and use case. This paper presents Wasef, a framework that uses a comprehensive set of timing, saving, and quality metrics to evaluate and compare different web complexity solutions in a reproducible manner and under realistic settings. The framework integrates a set of existing state-of-the-art solutions and facilitates the addition of newer solutions down the line. Wasef first creates a cache of web pages by crawling both landing and internal ones. Each page in the cache is then passed through a web complexity solution to generate an optimized version of the page. Finally, each optimized version is evaluated in a consistent manner using a uniform environment and metrics. We demonstrate how the framework can be used to compare and contrast the performance characteristics of different web complexity solutions under realistic conditions. We also show that the accessibility to pages in developing regions can be significantly improved, by evaluating the top 100 global pages in the developed world against the top 100 pages in the lowest 50 developing countries. Results show a significant difference in terms of complexity and a potential benefit for our framework in improving web accessibility in these countries.Comment: 15 pages, 4 figure

    Scalable Multi-Hop Data Dissemination in Vehicular Ad Hoc Network

    No full text
    Vehicular Ad Hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid change in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate travel density, so as to manage data dissemination accordingly. In this dissertation, we specifically aimed at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    Exploiting Mobile Edge Computing for Enhancing Vehicular Applications in Smart Cities

    No full text
    Mobile edge computing (MEC) has been recently proposed to bring computing capabilities closer to mobile endpoints, with the aim of providing low latency and real-time access to network information via applications and services. Several attempts have been made to integrate MEC in intelligent transportation systems (ITS), including new architectures, communication frameworks, deployment strategies and applications. In this paper, we explore existing architecture proposals for integrating MEC in vehicular environments, which would allow the evolution of the next generation ITS in smart cities. Moreover, we classify the desired applications into four major categories. We rely on a MEC architecture with three layers to propose a data dissemination protocol, which can be utilized by traffic safety and travel convenience applications in vehicular networks. Furthermore, we provide a simulation-based prototype to evaluate the performance of our protocol. Simulation results show that our proposed protocol can significantly improve the performance of data dissemination in terms of data delivery, communication overhead and delay. In addition, we highlight challenges and open issues to integrate MEC in vehicular networking environments for further research

    College of Information Technology CIT- 28 Design-To-Time Learning

    No full text
    Humans have the ability to flexibly adjust their information processing strategy according to situational characteristics. However, such ability has been largely overlooked in computational modeling research of human cognition, particularly in learning. The present work introduces frameworks of cognitive models of human learning that take contextual factors into account. Such factors include the cognitive time relative to the typical length of a knowledge volume embedded in a learning unit. Another factor includes the effective knowledge distilled from a learning unit. This factor describes the utility value or semantic density of a knowledge resource. The framework described in this paper provides a realistic model for human cognitive processes which are mapped into knowledge construction algorithms. In one proposed algorithm, knowledge construction is pre-planned to optimize knowledge quality based on the allocated learning time. This clairvoyant approach, lends itself to an automated knowledge construction process as knowledge utility is statically determined prior to exposing any material to the learner. In an alternative –greedy- approach, labeled in this paper a myopic, the learner participates directly in the utility optimization process throughout a progressive knowledge construction session. This approach is greedy as it is shortsighted in the sense that it takes decisions on the basis of information at hand without worrying about the effect these decisions may have in the future. A performance evaluation of both approaches is also presented in this paper. The results show interesting performance tradeoffs in scaling up knowledge quality when the allocated learning time increases

    Efficient Data Dissemination for Urban Vehicular Environments

    No full text
    corecore