240 research outputs found
Transmission Resonance in an Infinite Strip of Phason-Defects of a Penrose Approximant Network
An exact method that analytically provides transfer matrices in finite
networks of quasicrystalline approximants of any dimensionality is discussed.
We use these matrices in two ways: a) to exactly determine the band structure
of an infinite approximant network in analytical form; b) to determine, also
analytically, the quantum resistance of a finite strip of a network under
appropriate boundary conditions. As a result of a subtle interplay between
topology and phase interferences, we find that a strip of phason-defects along
a special symmetry direction of a low 2-d Penrose approximant, leads to the
rigorous vanishing of the reflection coefficient for certain energies. A
similar behavior appears in a low 3-d approximant. This type of ``resonance" is
discussed in connection with the gap structure of the corresponding ordered
(undefected) system.Comment: 18 pages special macros jnl.tex,reforder.tex, eqnorder.te
Strong Enhancement of Superconducting Correlation in a Two-Component Fermion Gas
We study high-density electron-hole (e-h) systems with the electron density
slightly larger than the hole density. We find a new superconducting phase, in
which the excess electrons form Cooper pairs moving in an e-h BCS phase. The
coexistence of the e-h and e-e orders is possible because e and h have opposite
charges, whereas analogous phases are impossible in the case of two fermion
species that have the same charge or are neutral. Most strikingly, the e-h
order enhances the superconducting e-h order parameter by more than one order
of magnitude as compared with that given by the BCS formula, for the same value
of the effective e-e attractive potential \lambda^{ee}. This new phase should
be observable in an e-h system created by photoexcitation in doped
semiconductors at low temperatures.Comment: 5 pages including 5 PostScript figure
Comparison of Technetium-99m-MIBI imaging with MRI for detection of spine involvement in patients with multiple myeloma
BACKGROUND: Recently, radiopharmaceutical scanning with Tc-99m-MIBI was reported to depict areas with active bone disease in multiple myeloma (MM) with both high sensitivity and specificity. This observation was explained by the uptake of Tc-99m-MIBI by neoplastic cells. The present investigation evaluates whether Tc-99m-MIBI imaging and magnetic resonance imaging (MRI) perform equally well in detecting myelomatous bone marrow lesions. METHODS: In 21 patients with MM, MRIs of the vertebral region TH12 to S1 and whole body scans with Tc-99m-MIBI were done. RESULTS: Tc-99m-MIBI scanning missed bone marrow infiltration in 43 of 87 vertebrae (50.5%) in which MRI showed neoplastic bone marrow involvement. In patients with disease stage I+II, Tc-99m-MIBI scanning was negative in all of 24 vertebrae infiltrated according to MRI. In patients with disease stage III, Tc-99m-MIBI scanning detected 44 of 63 (70%) vertebrae involved by neoplastic disease. CONCLUSION: Tc-99m-MIBI scanning underestimated the extent of myelomatous bone marrow infiltration in the spine, especially in patients with low disease stage
Nonlocal Phases of Local Quantum Mechanical Wavefunctions in Static and Time-Dependent Aharonov-Bohm Experiments
We show that the standard Dirac phase factor is not the only solution of the
gauge transformation equations. The full form of a general gauge function (that
connects systems that move in different sets of scalar and vector potentials),
apart from Dirac phases also contains terms of classical fields that act
nonlocally (in spacetime) on the local solutions of the time-dependent
Schr\"odinger equation: the phases of wavefunctions in the Schr\"odinger
picture are affected nonlocally by spatially and temporally remote magnetic and
electric fields, in ways that are fully explored. These contributions go beyond
the usual Aharonov-Bohm effects (magnetic or electric). (i) Application to
cases of particles passing through static magnetic or electric fields leads to
cancellations of Aharonov-Bohm phases at the observation point; these are
linked to behaviors at the semiclassical level (to the old Werner & Brill
experimental observations, or their "electric analogs" - or to recent reports
of Batelaan & Tonomura) but are shown to be far more general (true not only for
narrow wavepackets but also for completely delocalized quantum states). By
using these cancellations, certain previously unnoticed sign-errors in the
literature are corrected. (ii) Application to time-dependent situations
provides a remedy for erroneous results in the literature (on improper uses of
Dirac phase factors) and leads to phases that contain an Aharonov-Bohm part and
a field-nonlocal part: their competition is shown to recover Relativistic
Causality in earlier "paradoxes" (such as the van Kampen thought-experiment),
while a more general consideration indicates that the temporal nonlocalities
found here demonstrate in part a causal propagation of phases of quantum
mechanical wavefunctions in the Schr\"odinger picture. This may open a direct
way to address time-dependent double-slit experiments and the associated causal
issuesComment: 49 pages, 1 figure, presented in Conferences "50 years of the
Aharonov-Bohm effect and 25 years of the Berry's phase" (Tel Aviv and
Bristol), published in Journ. Phys. A. Compared to the published paper, this
version has 17 additional lines after eqn.(14) for maximum clarity, and the
Abstract has been slightly modified and reduced from the published 2035
characters to the required 1920 character
Role of phason-defects on the conductance of a 1-d quasicrystal
We have studied the influence of a particular kind of phason-defect on the
Landauer resistance of a Fibonacci chain. Depending on parameters, we sometimes
find the resistance to decrease upon introduction of defect or temperature, a
behavior that also appears in real quasicrystalline materials. We demonstrate
essential differences between a standard tight-binding model and a full
continuous model. In the continuous case, we study the conductance in relation
to the underlying chaotic map and its invariant. Close to conducting points,
where the invariant vanishes, and in the majority of cases studied, the
resistance is found to decrease upon introduction of a defect. Subtle
interference effects between a sudden phason-change in the structure and the
phase of the wavefunction are also found, and these give rise to resistive
behaviors that produce exceedingly simple and regular patterns.Comment: 12 pages, special macros jnl.tex,reforder.tex, eqnorder.tex. arXiv
admin note: original tex thoroughly broken, figures missing. Modified so that
tex compiles, original renamed .tex.orig in source
Unpaired and spin-singlet paired states of a two-dimensional electron gas in a perpendicular magnetic field
We present a variational study of both unpaired and spin-singlet paired
states induced in a two-dimensional electron gas at low density by a
perpendicular magnetic field. It is based on an improved circular-cell
approximation which leads to a number of closed analytical results. The
ground-state energy of the Wigner crystal containing a single electron per cell
in the lowest Landau level is obtained as a function of the filling factor
: the results are in good agreement with those of earlier approaches and
predict for the upper filling factor at which the
solid-liquid transition occurs. A novel localized state of spin-singlet
electron pairs is examined and found to be a competitor of the unpaired state
for filling factor . The corresponding phase boundary is quantitatively
displayed in the magnetic field-electron density plane.Comment: 19 pages, 8 figures, submitted to Phys. Rev. B on 7th April 2001. to
appear in Phys. Rev.
Effects of Backflow Correlation in the Three-Dimensional Electron Gas: Quantum Monte Carlo Study
The correlation energy of the homogeneous three-dimensional interacting
electron gas is calculated using the variational and fixed-node diffusion Monte
Carlo methods, with trial functions that include backflow and three-body
correlations. In the high density regime the effects of backflow dominate over
those due to three-body correlations, but the relative importance of the latter
increases as the density decreases. Since the backflow correlations vary the
nodes of the trial function, this leads to improved energies in the fixed-node
diffusion Monte Carlo calculations. The effects are comparable to those found
for the two-dimensional electron gas, leading to much improved variational
energies and fixed-node diffusion energies equal to the release-node energies
of Ceperley and Alder within statistical and systematic errors.Comment: 14 pages, 5 figures, submitted to Physical Review
Hidden symmetry and knot solitons in a charged two-condensate Bose system
We show that a charged two-condensate Ginzburg-Landau model or equivalently a
Gross-Pitaevskii functional for two charged Bose condensates, can be mapped
onto a version of the nonlinear O(3) -model. This implies in particular
that such a system possesses a hidden O(3) symmetry and allows for the
formation of stable knotted solitons. The results, in particular, should be
relevant to the superconducting MgB_2.Comment: This version will appear in Phys. Rev. B, added a comment on the case
when condensates in two bands do not independently conserve, also added a
figure and references to experimental papers on MgB_2 (for which our study is
relevant). Miscellaneous links on knot solitons are also available at the
homepage of one of the authors http://www.teorfys.uu.se/PEOPLE/egor/ .
Animations of knot solitons are available at
http://users.utu.fi/h/hietarin/knots/c45_p2.mp
Bond and charge density waves in the isotropic interacting two-dimensional quarter-filled band and the insulating state proximate to organic superconductivity
We report two surprising results regarding the nature of the spatial broken
symmetries in the two-dimensional (2D), quarter-filled band with strong
electron-electron interactions. First, in direct contradiction to the
predictions of one-electron theory, we find a coexisting ``bond-order and
charge density wave'' (BCDW) insulating ground state in the 2D rectangular
lattice for all anisotropies, including the isotropic limit. Second, we find
that the BCDW further coexists with a spin-density wave (SDW) in the range of
large anisotropy. Further, in contrast to the interacting half-filled band, in
the interacting quarter-filled band there are two transitions: first, a similar
singlet-to-AFM/SDW transition for large anisotropy and second, an
AFM/SDW-to-singlet transition at smaller anisotropy. We discuss how these
theoretical results apply to the insulating states that are proximate to the
superconducting states of 2:1 cationic charge-transfer solids (CTS).
An important consequence of this work is the suggestion that organic
superconductivity is related to the proximate Coulomb-induced BCDW, with the
SDW that coexists for large anisotropies being also a consequence of the BCDW,
rather than the driver of superconductivity.Comment: 29 pages, 18 eps figures. Revised with new appendices; to appear in
Phys. Rev. B 62, Nov 15, 200
MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings
Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up
- …