18 research outputs found

    Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells - Activation of protein kinase B by wortmannin-sensitive and -insensittve mechanisms

    Get PDF
    Previous studies using L6 myotubes have suggested that glycogen synthase kinase-3 (GSK-3) is phosphoryl ated and inactivated in response to insulin by protein kinase B (PKB, also known as Akt or RAG) (Cross, D, A, E., Alessi, D, R., Cohen, P., Andjelkovic, M., and Hemmings, B, A. (1995) Nature 378, 785-789), In the present study, marked increases in the activity of PKB have been shown to occur in insulin-treated rat epididymal fat cells with a time course compatible with the observed decrease in GSK-3 activity, Isoproterenol, acting primarily through beta(3)-adrenoreceptors, was found to decrease GSK-3 activity to a similar extent (approximately 50%) to insulin, However, unlike the effect of insulin, the inhibition of GSK by isoproterenol was not found to be sensitive to inhibition by the phosphatidylinositol 3'-kinase inhibitors, wortmannin or LY 294002, The change in GSK-3 activity brought about by isoproterenol could not be mimicked by the addition of permeant cyclic AMP analogues or forskolin to the cells, although at the concentrations used, these agents were able to stimulate lipolysis. Isoproterenol, but again not the cyclic AMP analogues, was found to increase the activity of PKB, although to a lesser extent than insulin. While wortmannin abolished the stimulation of PKB activity by insulin, it was without effect on the activation seen in response to isoproterenol, The activation of PKB by isoproterenol was not accompanied by any detectable change in the electrophoretic mobility of the protein on SDS-polyacrylamide gel electrophoresis. It would therefore appear that distinct mechanisms exist for the stimulation of PKB by insulin and isoproterenol in rat fat cells

    Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression

    No full text
    AMP-activated protein kinase (AMPK) has recently been implicated in the control of preproinsulin gene expression in pancreatic islet beta-cells [da Silva Xavier, Leclerc, Salt, Doiron, Hardie, Kahn and Rutter (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4023-4028]. Using pharmacological and molecular strategies to regulate AMPK activity in rat islets and clonal MIN6 beta-cells, we show here that the effects of AMPK are exerted largely upstream of insulin release. Thus forced increases in AMPK activity achieved pharmacologically with 5-amino-4-imidazolecarboxamide riboside (AICAR), or by adenoviral overexpression of a truncated, constitutively active form of the enzyme (AMPK alpha 1.T(172)D), blocked glucose-stimulated insulin secretion. In MIN6 cells, activation of AMPK suppressed glucose metabolism, as assessed by changes in total, cytosolic or mitochondrial [ATP] and NAD(P)H, and reduced increases in intracellular [Ca(2+)] caused by either glucose or tolbutamide. By contrast, inactivation of AMPK by expression of a dominant-negative form of the enzyme mutated in the catalytic site (AMPK alpha 1.D(157)A) did not affect glucose-stimulated increases in [ATP], NAD(P)H or intracellular [Ca(2+)], but led to the unregulated release of insulin. These results indicate that inhibition of AMPK by glucose is essential for the activation of insulin secretion by the sugar, and may contribute to the transcriptional stimulation of the preproinsulin gene. Modulation of AMPK activity in the beta-cell may thus represent a novel therapeutic strategy for the treatment of type 2 diabetes mellitus
    corecore