36 research outputs found

    Molecular Dynamics Study of the Local Structure of Photovoltaic Polymer PCDTBT

    Full text link
    To meet the huge demand for renewable energy, significant research effort focuses on creating efficient organic photovoltaic (OPV) devices. In comparison to silicon-based semiconductors, OPV materials have many superior properties such as cost effectiveness, being lightweight, and flexibility, which lead to a high potential for the replacement of silicon-based semiconductors. Recently, a large number of new alternating copolymer materials have demonstrated high power conversion efficiency (PCE). These successful polymers typically have low long-range order but a high hole mobility which directly affects the PCE which depends on polymer structure. In this study, a solution molecular model for poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl (PCDTBT) is developed and subsequently a molecular dynamics simulation conducted in order to understand the structure of the polymer solution. The simulation results are consistent with a low-solubility polymer that requires long equilibration times to planarize. The structural addition of side chains to inhibit rotation of thiophene rings could improve the conjugation and processability of PDCTBT leading to further improvements in OPV efficiency or hole mobility

    Photochemical Charge Separation in Poly(3-hexylthiophene) (P3HT) Films Observed with Surface Photovoltage Spectroscopy

    Full text link
    Surface photovoltage spectroscopy (SPS) was used to probe photon induced charge separation in thin films of regioregular and regiorandom poly(3-hexylthiophene) (P3HT) as a function of excitation energy. Both positive and negative photovoltage signals were observed under sub-band-gap (<2.0 eV) and super-band-gap (>2.0 eV) excitation of the polymer. The dependence of the spectra on substrate work function, thermal annealing, film thickness, and illumination intensity was investigated, allowing the identification of interface, charge transfer (CT), and band-gap states in the amorphous and crystalline regions of the polymer films. The ability to probe these states in polymer films will aid the development and optimization of organic electronic devices such as photovoltaics (OPVs), light-emitting diodes (OLEDs), and field effect transistors (OFETs). The direction and size of the observed photovoltage features can be explained using the depleted semiconductor model. © 2013 American Chemical Society
    corecore