5 research outputs found

    The Storm Time Development of Source Electrons and Chorus Wave Activity During CME- and CIR-Driven Storms

    No full text
    Whistler mode chorus waves influence the dynamics of the Earth\u27s radiation belts and the inner magnetosphere through gyroresonant wave particle interactions. Chorus waves are generated by anisotropic hot electrons from a few to tens of keV, called source electrons, which have increased access from the nightside plasma sheet to the inner magnetosphere during geomagnetic storms. The primary drivers of geomagnetic storms are coronal mass ejections (CMEs) and corotating interaction regions (CIRs). Through differences in their characteristic physical parameters, they can each impact the nightside plasma sheet differently. Using Van Allen Probes observations, we have conducted a superposed epoch analysis of chorus wave activity and source electron development across all local times between L = 2–6 during 25 CME- and 35 CIR-driven storms. The superposed epoch analysis shows that chorus wave power follows the storm phase-dependent access of the source electron population. Chorus waves and source electrons are observed on the dawnside during the main phase, when open drift path access via eastward convective drift from the plasma sheet is enhanced. During the recovery phase, chorus waves and source electrons are observed at all magnetic local times with low intensities, exemplifying the formation of a weak symmetric, trapped electron population. A linear theory approximation for wave growth from source electron observations shows that increased wave growth follows the enhanced source electrons during each storm phase. CME and CIR storms display similar behavior and levels of average wave power; however, chorus wave activity reaches lower L-shells during CME storms on average

    The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

    No full text
    Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the \u3c~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+

    The Outer Radiation Belt Response to the Storm Time Development of Seed Electrons and Chorus Wave Activity During CME and CIR Driven Storms

    No full text
    Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm-phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science instrument are used to identify the chorus wave activity. Our results show a deeper (lower L*), stronger (higher flux), and earlier (epoch time) average seed electron enhancement and a resulting greater average radiation belt electron enhancement in coronal mass ejection storms compared to the corotating interaction region storms despite similar levels and lifetimes of average chorus wave activity for the two storm drivers. The earlier and deeper seed electron enhancement during the coronal mass ejection storms, likely driven by greater convection and substorm activity, provides a higher probability for local acceleration. These results emphasize the importance of the timing and the level of the seed electron enhancements in radiation belt dynamics

    Interactions of the heliospheric current and plasma sheets with the bow shock: Cluster and Polar observations in the magnetosheath

    No full text
    On 12 March 2001, the Polar and Cluster spacecraft were at subsolar and cusp latitudes in the dayside magnetosheath, respectively, where they monitored the passage by Earth of a large-scale planar structure containing the high-density heliospheric plasma sheet (HPS) and the embedded current sheet. Over significant intervals, as the magnetic hole of the HPS passed Cluster and Polar, magnetic field strengths ∣B∣ were much smaller than expected for the shocked interplanetary magnetic field. For short periods, ∣B∣ even fell below values measured by ACE in the upstream solar wind. Within the magnetic hole the ratio of plasma thermal and magnetic pressures (plasma β) was consistently \u3e100 and exceeded 1000. A temporary increase in lag times for identifiable features in B components to propagate from the location of ACE to those of Cluster and Polar was associated with the expansion (and subsequent compression) of the magnetic field and observed low ∣B∣. Triangulation of the propagation velocity of these features across the four Cluster spacecraft configuration showed consistency with the measured component of ion velocity normal to the large-scale planar structure. B experienced large-amplitude wave activity, including fast magnetosonic waves. Within the low ∣B∣ region, guiding center behavior was disrupted and ions were subject to hydrodynamic rather than magnetohydrodynamic forcing. Under the reported conditions, a significant portion of the interplanetary coupling to the magnetosphere should proceed through interaction with the low-latitude boundary layer. Data acquired during a nearly simultaneous high-latitude pass of a Defense Meteorological Satellites Program satellite are consistent with this conjecture

    Two-stage oscillatory response of the magnetopause to a tangential discontinuity/vortex sheet followed by northward IMF: Cluster observations

    No full text
    We discuss the motion and structure of the magnetopause/boundary layer observed by Cluster in response to a joint tangential discontinuity/vortex sheet (TD/VS) observed by the Advanced Composition Explorer spacecraft on 7 December 2000. The observations are then supplemented by theory. Sharp polarity reversals in the east-west components of the field and flow By and Vy occurred at the discontinuity. These rotations were followed by a period of strongly northward interplanetary magnetic field (IMF). These two factors elicited a two-stage response at the magnetopause, as observed by Cluster situated in the boundary layer at the duskside terminator. First, the magnetopause suffered a large deformation from its equilibrium position, with large-amplitude oscillations of ∼3-min period being set up. These are argued to be mainly the result of tangential stresses associated with ΔVy the contribution of dynamic pressure changes being small in comparison. This strengthens recent evidence of the importance to magnetospheric dynamics of changes in azimuthal solar wind flow. The TD/VS impact caused a global response seen by ground magnetometers in a magnetic local time range spanning at least 12 h. The response monitored on ground magnetometers is similar to that brought about by magnetopause motions driven by dynamic pressure changes. Second, Cluster recorded higher-frequency waves (∼79 s). Two clear phases could be distinguished from the spectral power density, which decreased by a factor of ∼3 in the second phase. Applying compressible linearized MHD theory, we show that these waves are generated by the Kelvin-Helmholtz (KH) instability. Varying the local magnetic shear at the Cluster locale, as suggested by the temporal profile of the IMF clock angle, we find that locally stability was reinstated, so that the reduced power in the second phase is argued to be due residual KH activity arriving from locations farther to the dayside
    corecore