17 research outputs found

    Study protocol: Australasian Registry of Severe Cutaneous Adverse Reactions (AUS-SCAR)

    Get PDF
    Introduction Severe cutaneous adverse reactions (SCAR) are a group of T cell-mediated hypersensitivities associated with significant morbidity, mortality and hospital costs. Clinical phenotypes include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) and acute generalised exanthematous pustulosis (AGEP). In this Australasian, multicentre, prospective registry, we plan to examine the clinical presentation, drug causality, genomic predictors, potential diagnostic approaches, treatments and long-term outcomes of SCAR in Australia and New Zealand. Methods and analysis Adult and adolescent patients with SCAR including SJS, TEN, DRESS, AGEP and another T cell-mediated hypersensitivity, generalised bullous fixed drug eruption, will be prospectively recruited. A waiver of consent has been granted for some sites to retrospectively include cases which result in early mortality. DNA will be collected for all prospective cases. Blood, blister fluid and skin biopsy sampling is optional and subject to patient consent and site capacity. To develop culprit drug identification and prevention, genomic testing will be performed to confirm human leukocyte antigen (HLA) type and ex vivo testing will be performed via interferon-γ release enzyme linked immunospot assay using collected peripheral blood mononuclear cells. The long-term outcomes of SCAR will be investigated with a 12-month quality of life survey and examination of prescribing and mortality data. Ethics and dissemination This study was reviewed and approved by the Austin Health Human Research Ethics Committee (HREC/50791/Austin-19). Results will be published in peer-reviewed journals and presented at relevant conferences

    CD8+ T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity

    Get PDF
    To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαβ repertoires and promiscuous αβ-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαβ diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses

    Studies on carbohydrate xenoantigens

    No full text
    Naturally occurring and elicited anti-carbohydrate antibodies play a major role in immune responses to xenografts. The original obstacles associated with the Gal antigen have been largely resolved by the generation of knockout pigs. In contrast, much less is known about the nature and role of non-Gal carbohydrate antigens and the antibodies recognizing these. These antibodies can be identified and characterized by enzyme-linked immunosorbent assay. Furthermore, the biological significance of the non-Gal antigen(s) can be determined by expression of the relevant glycosyltransferase(s) by transfection and analyzed by antibody and/or lectin binding. © 2012 Springer Science+Business Media, LLC

    An in vivo mouse model of intraosseous spinal cancer causing evolving paraplegia

    Get PDF
    The spine is the commonest site of skeletal metastatic disease and uncontrolled growth of cancer in the spine will inevitably cause pain and neurologic compromise. Improved understanding of the pathobiology behind this devastating condition is urgently needed. For this reason, the aim of this study was to establish a clinically relevant, animal model of spinal cancer. A percutaneous orthotopic injection of human breast (MDA-MB-231) or human prostate (PC-3) cancer cells was administered into the upper lumbar spine of nude mice (n = 6). Animals were monitored twice daily for general welfare, gait asymmetry or disturbance, and hindlimb weakness. After sacrifice, plain radiographs, micro-CT imaging and histological analysis of the spines were performed on each mouse. All mice recovered fully from the inoculation procedure and displayed normal gait and behaviour patterns for at least 3 weeks post-inoculation. Subsequently, between 3 and 5 weeks post-inoculation, each mouse developed evolving paralysis in their hindlimbs over 48-72 h. All followed the same pattern of decline following onset of neurological dysfunction; from gait asymmetry and unilateral hindlimb weakness, to complete unilateral hindlimb paralysis and finally to complete bilateral hindlimb paralysis. Plain radiographs, micro-CT scanning and histological analysis confirmed local tumour growth and destruction of the spine in all six mice. An in vivo mouse model of human intraosseous spinal cancer has been established forming cancers that grow within the spine and cause epidural spinal cord compression, resulting in a reproducible, evolving neurological deficit and paralysis that closely resembles the human condition

    Cross-reactivity between vancomycin, teicoplanin and telavancin in HLA-A*32:01 positive vancomycin DRESS patients sharing an HLA-Class II haplotype

    Get PDF
    All fifteen patients with HLA-A*32:01 restricted vancomycin-induced DRESS, showed negative ex vivo responses to dalbavancin however two showed cross-reactivity to teicoplanin and telavancin. Adjunctive diagnostic testing should be considered to detect potential cross-reactivity amongst glycopeptides

    Blister fluid as a cellular input for ex vivo diagnostics in drug-induced severe cutaneous adverse reactions improves sensitivity and explores immunopathogenesis

    Get PDF
    Background Drug-induced severe cutaneous adverse reactions (SCARs) are presumed T-cell-mediated hypersensitivities associated with significant morbidity and mortality. Traditional in vivo testing methods, such as patch or intradermal testing, are limited by a lack of standardisation and poor sensitivity. Modern approaches to testing include measurement of IFN-γ release from patient peripheral blood mononuclear cells (PBMC) stimulated with the suspected causative drug. Objective We sought to improve ex vivo diagnostics for drug-induced SCAR by comparing enzyme-linked immunospot (ELISpot) sensitivities and flow cytometry-based intracellular cytokine staining (ICS) and cellular composition of separate samples (PBMC or blister fluid cells (BFC)) from the same donor. Methods IFN-γ release ELISpot and flow cytometry analyses were performed on donor-matched PBMC and BFC samples from four SCAR patients with distinct drug-hypersensitivity. Results Immune responses to suspected drugs were detected in both PBMC and BFC samples of two donors (Case 1 in response to ceftriaxone and Case 4 to oxypurinol), with BFC eliciting stronger responses. For two other donors, only BFC samples showed a response to meloxicam (Case 2) or sulfamethoxazole and its 4-nitro metabolite (Case 3). Consistently, flow cytometry revealed a greater proportion of IFN-γ-secreting cells in the BFC compared to PBMC. BFC cells from Case 3 were also enriched for memory/activation/tissue-recruitment markers over PBMC. Conclusion Analysis of BFC samples for drug-hypersensitivity diagnostics offers a higher sensitivity for detecting positive responses compared to PBMC. This is consistent with recruitment (and enrichment) of cytokine-secreting cells with a memory/activated phenotype into blisters

    The role of In Vivo and Ex Vivo diagnostic tools in severe delayed Immune-Mediated adverse antibiotic drug reactions

    No full text
    Background The use of in vivo and ex vivo diagnostic tools for delayed immune-mediated adverse drug reactions is currently ill defined. Objective To determine whether the combination of skin testing and/or IFN-γ enzyme-linked immunoSpot assay (ELISpot) can aid diagnosis of these allergy phenotypes. Methods Patients with antibiotic-associated severe delayed immune-mediated adverse drug reaction hypersensitivity, including Stevens-Johnson syndrome and toxic epidermal necrolysis, drug reaction with eosinophilia and systemic symptoms (DRESS), acute generalized exanthematous pustulosis, generalized bullous fixed drug eruption, and severe maculopapular exanthema, were prospectively recruited. In vivo testing was completed to the implicated drug(s), and ex vivo testing was performed with the patient's PBMCs stimulated with the relevant antibiotic concentrations for IFN-γ release ELISpot measurement. Results Eighty-one patients met the inclusion criteria, with DRESS (42; 51.9%) accounting for most cases. Among the 63 (78%) who had an ELISpot assay performed, 34 (54%) were positive to at least 1 implicated antibiotic (median spot-forming units/million cells, 99.5; interquartile range, 68-187), with glycopeptide being a strong predictor of positivity (adjusted odds ratio, 6.11; 95% CI, 1.74-21.42). In combination (in vivo and ex vivo), 51 (63%) of those tested were positive to an implicated antibiotic. For DRESS and severe maculopapular exanthema associated with penicillins and cephalosporins, this combination confirmed the culprit agent in 11 of the 12 cases and in 6 of 7 for DRESS associated with glycopeptides. Conclusions This study demonstrates that using in vivo in combination with ex vivo testing can enhance the diagnostic approach in these severe phenotypes by assisting with the identification of possible culprit antibiotics
    corecore